Writing mixed-precision kernels allows to achieve higher throughput together with outputs whose precision remain within given limits. The recent introduction of native half-precision arithmetic capabilities in several GPUs, such as NVIDIA P100 and AMD Vega 10, contributes to make precision-tuning even more relevant as of late. However, it is not trivial to manually find which variables are to be represented as half-precision instead of single- or double-precision. Although the use of half-precision arithmetic can speed up kernel execution considerably, it can also result in providing non-usable kernel outputs, whenever the wrong variables are declared using the half-precision data-type. In this paper we present an automatic approach for precision tuning. Given an OpenCL kernel with a set of inputs declared by a user (i.e., the person responsible for programming and/or tuning the kernel), our approach is capable of deriving the mixed-precision versions of the kernel that are better improve upon the original with respect to a given metric (e.g., time-to-solution, energy-to-solution). We allow the user to declare and/or select a metric to measure and to filter solutions based on the quality of the output. We implement a proof-of-concept of our approach using an aspect-oriented programming language called LARA. It is capable of generating mixed-precision kernels that result in considerably higher performance when compared with the original single-precision floating-point versions, while generating outputs that can be acceptable in some scenarios.

Aspect-driven mixed-precision tuning targeting GPUs

Cherubin, Stefano;Agosta, Giovanni
2018-01-01

Abstract

Writing mixed-precision kernels allows to achieve higher throughput together with outputs whose precision remain within given limits. The recent introduction of native half-precision arithmetic capabilities in several GPUs, such as NVIDIA P100 and AMD Vega 10, contributes to make precision-tuning even more relevant as of late. However, it is not trivial to manually find which variables are to be represented as half-precision instead of single- or double-precision. Although the use of half-precision arithmetic can speed up kernel execution considerably, it can also result in providing non-usable kernel outputs, whenever the wrong variables are declared using the half-precision data-type. In this paper we present an automatic approach for precision tuning. Given an OpenCL kernel with a set of inputs declared by a user (i.e., the person responsible for programming and/or tuning the kernel), our approach is capable of deriving the mixed-precision versions of the kernel that are better improve upon the original with respect to a given metric (e.g., time-to-solution, energy-to-solution). We allow the user to declare and/or select a metric to measure and to filter solutions based on the quality of the output. We implement a proof-of-concept of our approach using an aspect-oriented programming language called LARA. It is capable of generating mixed-precision kernels that result in considerably higher performance when compared with the original single-precision floating-point versions, while generating outputs that can be acceptable in some scenarios.
ACM International Conference Proceeding Series
9781450364447
Aspect-driven; GPGPU; Mixed-precision; Human-Computer Interaction; Computer Networks and Communications; 1707; Software
File in questo prodotto:
File Dimensione Formato  
2018_PARMA-DITAM_aspect-driven-mixed.pdf

Accesso riservato

Descrizione: Main article
: Pre-Print (o Pre-Refereeing)
Dimensione 614.3 kB
Formato Adobe PDF
614.3 kB Adobe PDF   Visualizza/Apri
2018_PARMA-DITAM_aspect-driven-mixed_open.pdf

accesso aperto

Descrizione: DRAFT
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 621.45 kB
Formato Adobe PDF
621.45 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1060887
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 3
social impact