Taylor-Fourier (TF) filters represent a powerful tool to design PMU algorithms able to estimate synchrophasor, frequency and rate of change of frequency (ROCOF). The resulting techniques are based on dynamic representations of the synchrophasor, hence they are particularly suitable to track the evolution of its parameters during time-varying conditions. Electrical quantities in power systems are typically three-phase and weakly unbalanced, but most PMU measurement techniques are developed by considering them as a set of three single phase signals; on the contrary, this peculiarity can be favorably exploited. For the first time, in this paper, the TF approach is applied to the space vector obtained from three-phase measurements. The positive sequence synchrophasor can be easily extracted along with the system frequency and ROCOF leveraging the three-phase characteristics. Performance of the proposed technique is assessed by using test signals defined by the standard IEEE C37.118.1-2011. Results show that the positive sequence estimations are always more accurate when compared to the single-phase measurements provided by the conventional TF algorithms under the same conditions.

Synchrophasor and frequency estimations: Combining space vector and Taylor-Fourier approaches

Toscani, Sergio
2018-01-01

Abstract

Taylor-Fourier (TF) filters represent a powerful tool to design PMU algorithms able to estimate synchrophasor, frequency and rate of change of frequency (ROCOF). The resulting techniques are based on dynamic representations of the synchrophasor, hence they are particularly suitable to track the evolution of its parameters during time-varying conditions. Electrical quantities in power systems are typically three-phase and weakly unbalanced, but most PMU measurement techniques are developed by considering them as a set of three single phase signals; on the contrary, this peculiarity can be favorably exploited. For the first time, in this paper, the TF approach is applied to the space vector obtained from three-phase measurements. The positive sequence synchrophasor can be easily extracted along with the system frequency and ROCOF leveraging the three-phase characteristics. Performance of the proposed technique is assessed by using test signals defined by the standard IEEE C37.118.1-2011. Results show that the positive sequence estimations are always more accurate when compared to the single-phase measurements provided by the conventional TF algorithms under the same conditions.
2018
I2MTC 2018 - 2018 IEEE International Instrumentation and Measurement Technology Conference: Discovering New Horizons in Instrumentation and Measurement, Proceedings
9781538622223
Frequency; Phasor Measurement Unit (PMU); Rate of Change of Frequency (RO-COF); Synchrophasor estimation; Voltage Measurement; Safety, Risk, Reliability and Quality; Instrumentation
ELETTRICI
File in questo prodotto:
File Dimensione Formato  
08409732.pdf

Accesso riservato

Descrizione: Articolo principale
: Publisher’s version
Dimensione 1.44 MB
Formato Adobe PDF
1.44 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1060356
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 0
social impact