The paper investigates the opportunity of exploiting self-sensing properties of carbon nanotubes to generate a feedback signal, representative of the vibratory state of the structure, to actively suppress vibrations. Due to the so called "tunneling effect", carbon nanotubes (CNT) embedded in the matrix of a composite structure realize a distributed sensor. This means there is a no more a sensor, but, in fact, it is the same structure that is able to provide information on its state on vibration. The paper demonstrates it is possible to exploit electrical signal related to the deformation of the structures to estimate vibration and to design suitable control forces to suppress them.

Exploiting self sensing features of carbon nanotubes composite structures for active vibration control

Cinquemani, S.;Scaccabarozzi, D.;Sbarufatti, C.;Cazzulani, G.
2018-01-01

Abstract

The paper investigates the opportunity of exploiting self-sensing properties of carbon nanotubes to generate a feedback signal, representative of the vibratory state of the structure, to actively suppress vibrations. Due to the so called "tunneling effect", carbon nanotubes (CNT) embedded in the matrix of a composite structure realize a distributed sensor. This means there is a no more a sensor, but, in fact, it is the same structure that is able to provide information on its state on vibration. The paper demonstrates it is possible to exploit electrical signal related to the deformation of the structures to estimate vibration and to design suitable control forces to suppress them.
2018
Proceedings of SPIE - The International Society for Optical Engineering
9781510616868
active control; carbon nanotubes; electrical conductivity; GFRP; vibration; Electronic, Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic Engineering
File in questo prodotto:
File Dimensione Formato  
Exploiting self sensing features of Carbon Nanotubes Composite Structures for active vibration control.pdf

Accesso riservato

: Altro materiale allegato
Dimensione 418.86 kB
Formato Adobe PDF
418.86 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1056749
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact