We study analytically the polarization behaviour of directional couplers composed of birefringent waveguides, showing that they can induce polarization transformations that depend on the specific input-output path considered. On the basis of this study, we propose and demonstrate experimentally, by femtosecond laser writing, directional couplers that yield a polarization-independent power splitting and, at the same time, preserve the polarization state of the propagating light. More in detail, we devise two di erent approaches to realize such devices: the first one is based on local birefringence engineering by additional refractive index modification tracks, while the second one exploits ultra-low birefringence waveguides (b = 1.2 × 10−6), obtained by thermal annealing.
Symmetric polarization-insensitive directional couplers fabricated by femtosecond laser writing
Corrielli, Giacomo;Atzeni, Simone;PIACENTINI, SIMONE;PITSIOS, IOANNIS;Crespi, Andrea;Osellame, Roberto
2018-01-01
Abstract
We study analytically the polarization behaviour of directional couplers composed of birefringent waveguides, showing that they can induce polarization transformations that depend on the specific input-output path considered. On the basis of this study, we propose and demonstrate experimentally, by femtosecond laser writing, directional couplers that yield a polarization-independent power splitting and, at the same time, preserve the polarization state of the propagating light. More in detail, we devise two di erent approaches to realize such devices: the first one is based on local birefringence engineering by additional refractive index modification tracks, while the second one exploits ultra-low birefringence waveguides (b = 1.2 × 10−6), obtained by thermal annealing.File | Dimensione | Formato | |
---|---|---|---|
corrielli2018spi.pdf
accesso aperto
:
Publisher’s version
Dimensione
3.62 MB
Formato
Adobe PDF
|
3.62 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.