Prediction of time series data is of relevance for many industrial applications. The prediction can be made in one-step and multi-step ahead. For predictive maintenance, multi-step-ahead prediction is of interest for projecting the evolution of the future conditions of the equipment of interest, computing the remaining useful life and taking corresponding maintenance decisions. Recursive prediction is one of the popular strategies for multi-step-ahead prediction. SVM is a popular data-driven approach that has been used for recursive multi-step-ahead prediction. Tuning the hyperparameters in SVM during the training process is challenging, and normally the hyperparameters are tuned by solving an optimization problem. This paper analyses the possible objectives of the optimization for tuning hyperparameters. Through experiments on one synthetic dataset and two real time series data, related to the prediction of wind speed in a region and leakage from the reactor coolant pump in a nuclear power plant, a bi-objective optimization combining mean absolute derivatives and accuracy on all prediction steps is shown to be the best choice for tuning SVM hyperparameters for recursive multi-step-ahead prediction.

SVM hyperparameters tuning for recursive multi-step-ahead prediction

Zio, Enrico
2016-01-01

Abstract

Prediction of time series data is of relevance for many industrial applications. The prediction can be made in one-step and multi-step ahead. For predictive maintenance, multi-step-ahead prediction is of interest for projecting the evolution of the future conditions of the equipment of interest, computing the remaining useful life and taking corresponding maintenance decisions. Recursive prediction is one of the popular strategies for multi-step-ahead prediction. SVM is a popular data-driven approach that has been used for recursive multi-step-ahead prediction. Tuning the hyperparameters in SVM during the training process is challenging, and normally the hyperparameters are tuned by solving an optimization problem. This paper analyses the possible objectives of the optimization for tuning hyperparameters. Through experiments on one synthetic dataset and two real time series data, related to the prediction of wind speed in a region and leakage from the reactor coolant pump in a nuclear power plant, a bi-objective optimization combining mean absolute derivatives and accuracy on all prediction steps is shown to be the best choice for tuning SVM hyperparameters for recursive multi-step-ahead prediction.
Bi-objective optimization; Hyperparameters tuning; Recursive multi-step-ahead prediction; Single-objective optimization; Support vector machine; Artificial Intelligence; Software
File in questo prodotto:
File Dimensione Formato  
Tuning hyperpara of recursive SVM.pdf

accesso aperto

Descrizione: articolo
Dimensione 794.57 kB
Formato Adobe PDF
794.57 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1053449
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 19
social impact