Model-based reliability analysis and assessment methods rely on models, which are assumed to be precise, to predict reliability. In practice, however, the precision of the model cannot be guaranteed due to the presence of epistemic uncertainty. In this paper, a new reliability metric, called belief reliability, is defined to explicitly account for epistemic uncertainty in model-based reliability analysis and assessment. A new method is developed to explicitly quantify epistemic uncertainty by measuring the effectiveness of the engineering analysis and assessment activities related to reliability. To evaluate belief reliability, an integrated framework is presented where the contributions of design margin, aleatory uncertainty, and epistemic uncertainty are integrated to yield a comprehensive and systematic description of reliability. The developed methods are demonstrated by two case studies.

A model-based reliability metric considering aleatory and epistemic uncertainty

Zio, Enrico
2017-01-01

Abstract

Model-based reliability analysis and assessment methods rely on models, which are assumed to be precise, to predict reliability. In practice, however, the precision of the model cannot be guaranteed due to the presence of epistemic uncertainty. In this paper, a new reliability metric, called belief reliability, is defined to explicitly account for epistemic uncertainty in model-based reliability analysis and assessment. A new method is developed to explicitly quantify epistemic uncertainty by measuring the effectiveness of the engineering analysis and assessment activities related to reliability. To evaluate belief reliability, an integrated framework is presented where the contributions of design margin, aleatory uncertainty, and epistemic uncertainty are integrated to yield a comprehensive and systematic description of reliability. The developed methods are demonstrated by two case studies.
2017
belief reliability; epistemic uncertainty; model uncertainty; physics-of-failure; Reliability; Computer Science (all); Materials Science (all); Engineering (all)
File in questo prodotto:
File Dimensione Formato  
205_A model-based reliability metric considering aleatory and epistemic uncertainty.pdf

accesso aperto

Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1053238
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 28
social impact