The use of Echo State Networks (ESNs) for the prediction of the Remaining Useful Life (RUL) of industrial components, i.e. the time left before the equipment will stop fulfilling its functions, is attractive because of their capability of handling the system dynamic behavior, the measurement noise, and the stochasticity of the degradation process. In particular, in this paper we originally resort to an ensemble of ESNs, for enhancing the performances of individual ESNs and providing also an estimation of the uncertainty affecting the RUL prediction. The main methodological novelties in our use of ESNs for RUL prediction are: i) the use of the individual ESN memory capacity within the dynamic procedure for aggregating of the ESNs outcomes; ii) the use of an additional ESN for estimating the RUL uncertainty, within the Mean Variance Estimation (MVE) approach. With these novelties, the developed approach outperforms a static ensemble and a standard MVE approach for uncertainty estimation in tests performed on a synthetic and two industrial datasets.

Ensemble of optimized echo state networks for remaining useful life prediction

Rigamonti, Marco;Baraldi, Piero;Zio, Enrico;
2017-01-01

Abstract

The use of Echo State Networks (ESNs) for the prediction of the Remaining Useful Life (RUL) of industrial components, i.e. the time left before the equipment will stop fulfilling its functions, is attractive because of their capability of handling the system dynamic behavior, the measurement noise, and the stochasticity of the degradation process. In particular, in this paper we originally resort to an ensemble of ESNs, for enhancing the performances of individual ESNs and providing also an estimation of the uncertainty affecting the RUL prediction. The main methodological novelties in our use of ESNs for RUL prediction are: i) the use of the individual ESN memory capacity within the dynamic procedure for aggregating of the ESNs outcomes; ii) the use of an additional ESN for estimating the RUL uncertainty, within the Mean Variance Estimation (MVE) approach. With these novelties, the developed approach outperforms a static ensemble and a standard MVE approach for uncertainty estimation in tests performed on a synthetic and two industrial datasets.
2017
Differential Evolution; Echo state networks; Ensembles; Prediction Intervals; Prediction uncertainty; Recurrent neural networks; Computer Science Applications1707 Computer Vision and Pattern Recognition; Cognitive Neuroscience; Artificial Intelligence
File in questo prodotto:
File Dimensione Formato  
197_Ensemble of optimized echo state networks for remaining useful life prediction.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.18 MB
Formato Adobe PDF
2.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1053235
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 87
  • ???jsp.display-item.citation.isi??? 72
social impact