Avionics (aeronautics and aerospace) industries must rely on components and systems of demonstrated high reliability. For this, handbook-based methods have been traditionally used to design for reliability, develop test plans, and define maintenance requirements and sustainment logistics. However, these methods have been criticized as flawed and leading to inaccurate and misleading results. In its recent report on enhancing defense system reliability, the U.S. National Academy of Sciences has recently discredited these methods, judging the Military Handbook (MIL-HDBK-217) and its progeny as invalid and inaccurate. This paper discusses the issues that arise with the use of handbook-based methods in commercial and military avionics applications. Alternative approaches to reliability design (and its demonstration) are also discussed, including similarity analysis, testing, physics-of-failure, and data analytics for prognostics and systems health management.

A critique of reliability prediction techniques for avionics applications

ZIO, Enrico;
2017-01-01

Abstract

Avionics (aeronautics and aerospace) industries must rely on components and systems of demonstrated high reliability. For this, handbook-based methods have been traditionally used to design for reliability, develop test plans, and define maintenance requirements and sustainment logistics. However, these methods have been criticized as flawed and leading to inaccurate and misleading results. In its recent report on enhancing defense system reliability, the U.S. National Academy of Sciences has recently discredited these methods, judging the Military Handbook (MIL-HDBK-217) and its progeny as invalid and inaccurate. This paper discusses the issues that arise with the use of handbook-based methods in commercial and military avionics applications. Alternative approaches to reliability design (and its demonstration) are also discussed, including similarity analysis, testing, physics-of-failure, and data analytics for prognostics and systems health management.
2017
Avionics reliability; Handbook-based methods; MIL-HDBK-217; Physics of failure; Prognostics and health management; Aerospace Engineering; Mechanical Engineering
File in questo prodotto:
File Dimensione Formato  
11311-1053212_Zio.pdf

accesso aperto

: Publisher’s version
Dimensione 573.96 kB
Formato Adobe PDF
573.96 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1053212
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 25
social impact