The in plane coefficient of thermal expansion (CTE) and the residual stress of nanostructured W based coatings are extensively investigated. The CTE and the residual stresses are derived by means of an optimized ad-hoc developed experimental setup based on the detection of the substrate curvature by a laser system. The nanostructured coatings are deposited by Pulsed Laser Deposition. Thanks to its versatility, nanocrystalline W metallic coatings, ultra-nano-crystalline pure W and W-Tantalum coatings and amorphous-like W coatings are obtained. The correlation between the nanostructure, the residual stress and the CTE of the coatings are thus elucidated. We find that all the samples show a compressive residual state of stress that decreases as the structure goes from columnar nanocrystalline to amorphous-like. The CTE of all the coatings is higher than the one of the corresponding bulk W form. In particular, as the grain size shrinks, the CTE increases from 5.1 10â6Kâ1for nanocrystalline W to 6.6 10â6Kâ1in the ultra-nano-crystalline region. When dealing with amorphous W, the further increase of the CTE is attributed to a higher porosity degree of the samples. The CTE of the coatings is also investigated as function of materials stiffness: when stiffness decreases, the CTE increases.
Coefficient of thermal expansion of nanostructured tungsten based coatings assessed by substrate curvature method
Besozzi, E.;Dellasega, D.;Pezzoli, A.;Mantegazza, A.;Passoni, M.;Beghi, M. G.
2018-01-01
Abstract
The in plane coefficient of thermal expansion (CTE) and the residual stress of nanostructured W based coatings are extensively investigated. The CTE and the residual stresses are derived by means of an optimized ad-hoc developed experimental setup based on the detection of the substrate curvature by a laser system. The nanostructured coatings are deposited by Pulsed Laser Deposition. Thanks to its versatility, nanocrystalline W metallic coatings, ultra-nano-crystalline pure W and W-Tantalum coatings and amorphous-like W coatings are obtained. The correlation between the nanostructure, the residual stress and the CTE of the coatings are thus elucidated. We find that all the samples show a compressive residual state of stress that decreases as the structure goes from columnar nanocrystalline to amorphous-like. The CTE of all the coatings is higher than the one of the corresponding bulk W form. In particular, as the grain size shrinks, the CTE increases from 5.1 10â6Kâ1for nanocrystalline W to 6.6 10â6Kâ1in the ultra-nano-crystalline region. When dealing with amorphous W, the further increase of the CTE is attributed to a higher porosity degree of the samples. The CTE of the coatings is also investigated as function of materials stiffness: when stiffness decreases, the CTE increases.File | Dimensione | Formato | |
---|---|---|---|
Besozzi_Mat&Des18_Curvature method on W.pdf
Accesso riservato
:
Publisher’s version
Dimensione
2.58 MB
Formato
Adobe PDF
|
2.58 MB | Adobe PDF | Visualizza/Apri |
Besozzi_Mat&Des18_postprint.pdf
Open Access dal 06/10/2019
Descrizione: post print
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
1.23 MB
Formato
Adobe PDF
|
1.23 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.