Nowadays, micro-porous layers (MPLs) for polymer electrolyte membrane fuel cells (PEMFCs) are commonly deposited onto gas diffusion layer (GDL) substrates starting from hydrophobic carbon-based dispersions. In this work, different quantities of fluorinated ethylene propylene (FEP), a fluorinated copolymer proven to be superior to polytetrafluoroethylene (PTFE) for a proper water management, were used to make both GDL and MPL hydrophobic. After the identification of the optimal amount of FEP, carboxymethylcellulose (CMC) was also added to gas diffusion media (GDM) to reduce overall ohmic resistance of the whole device and adhesion of MPLs to GDLs. Ex-situ chemical and mechanical accelerated stress tests (ASTs) were carried out to accelerate degradation of materials aiming to assess their durability. The highest quantity of FEP in GDMs led to the best electrochemical and diffusive properties. The presence of CMC allowed reducing overall ohmic resistance due to a better electrolyte hydration. A satisfactory durability was proven since the fundamental properties related to gas diffusion medium, such as wettability, ohmic and mass transport resistances, revealed to be quasi-stable upon ASTs.

Performance Evaluation and Durability Enhancement of FEP-Based Gas Diffusion Media for PEM Fuel Cells

Latorrata, Saverio;Cristiani, Cinzia;Dotelli, Giovanni;Gallo Stampino, Paola
2017-01-01

Abstract

Nowadays, micro-porous layers (MPLs) for polymer electrolyte membrane fuel cells (PEMFCs) are commonly deposited onto gas diffusion layer (GDL) substrates starting from hydrophobic carbon-based dispersions. In this work, different quantities of fluorinated ethylene propylene (FEP), a fluorinated copolymer proven to be superior to polytetrafluoroethylene (PTFE) for a proper water management, were used to make both GDL and MPL hydrophobic. After the identification of the optimal amount of FEP, carboxymethylcellulose (CMC) was also added to gas diffusion media (GDM) to reduce overall ohmic resistance of the whole device and adhesion of MPLs to GDLs. Ex-situ chemical and mechanical accelerated stress tests (ASTs) were carried out to accelerate degradation of materials aiming to assess their durability. The highest quantity of FEP in GDMs led to the best electrochemical and diffusive properties. The presence of CMC allowed reducing overall ohmic resistance due to a better electrolyte hydration. A satisfactory durability was proven since the fundamental properties related to gas diffusion medium, such as wettability, ohmic and mass transport resistances, revealed to be quasi-stable upon ASTs.
2017
durability; gas diffusion medium; GDL coating; electrochemical impedance spectroscopy; PEM fuel cell
File in questo prodotto:
File Dimensione Formato  
energies-10-02063 (6).pdf

accesso aperto

Descrizione: published paper open access
: Publisher’s version
Dimensione 6.78 MB
Formato Adobe PDF
6.78 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1051353
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact