In this paper, micro-scale uncertainties affecting the behaviour of microelectromechanical systems (MEMS) are investigated through a mixed numerical/experimental approach. An on-chip test device has been designed and fabricated using standard MEMS fabrication techniques, to deform a (microstructured) polysilicon beam. To interpret the experimental data and also the relevant scatterings in the system response, a high fidelity, parametric finite element (FE) model of the device is developed in ANSYS. Uncertainties in the parameters governing the polysilicon mechanical properties and the geometry of the movable structure are estimated through an inverse analysis. To systematically quantify the uncertainty levels within the realm of a cost-effective statistical analysis, a model order reduction technique based on a synergy of proper orthogonal decomposition (POD) and Kriging interpolation is proposed. The resulting reduced order model is finally fed into a transitional Markov chain Monte Carlo (TMCMC) algorithm for the estimation of the unknown parameters.

Uncertainty quantification in polysilicon MEMS through on-chip testing and reduced-order modelling

Mirzazadeh, R;Mariani, S
2017-01-01

Abstract

In this paper, micro-scale uncertainties affecting the behaviour of microelectromechanical systems (MEMS) are investigated through a mixed numerical/experimental approach. An on-chip test device has been designed and fabricated using standard MEMS fabrication techniques, to deform a (microstructured) polysilicon beam. To interpret the experimental data and also the relevant scatterings in the system response, a high fidelity, parametric finite element (FE) model of the device is developed in ANSYS. Uncertainties in the parameters governing the polysilicon mechanical properties and the geometry of the movable structure are estimated through an inverse analysis. To systematically quantify the uncertainty levels within the realm of a cost-effective statistical analysis, a model order reduction technique based on a synergy of proper orthogonal decomposition (POD) and Kriging interpolation is proposed. The resulting reduced order model is finally fed into a transitional Markov chain Monte Carlo (TMCMC) algorithm for the estimation of the unknown parameters.
2017
18th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, EuroSimE 2017
978-150904344-6
File in questo prodotto:
File Dimensione Formato  
published.pdf

Accesso riservato

: Publisher’s version
Dimensione 13.07 MB
Formato Adobe PDF
13.07 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1049693
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 1
social impact