Masonry structures represent one of the commonest structural typologies for buildings worldwide. In particular, masonry walls constitute, by far, the prevailing elementary structural unit in the majority of masonry constructions both modern and historical. This contribution validates an approach proposed by the authors for the limit analysis masonry vaults, now extended to a new general procedure for the structural assessment of masonry walls with out-of-plane loading based on an upper bound formulation. A given masonry panel of arbitrary form possibly with openings is described through its NURBS (Non-Uniform Rational B-Spline) parametric representation in the three-dimensional Euclidean space. An initial set of rigid elements subdividing the original wall geometry is identified through the definition of a suitable lattice of nodes. An upper-bound limit analysis formulation, taking into account the main characteristics of masonry material through homogenization, is deduced where internal dissipation is allowed along element edges only. As shown in a number of examples, a good estimate of the collapse load is obtained, provided that the initial net of yield lines is suitably adjusted by means of a Genetic Algorithm (GA).

Fast kinematic limit analysis of masonry walls with out-of-plane loading

Milani, Gabriele;Grillanda, Nicola;TRALLI, ANTONIO MICHELE
2017-01-01

Abstract

Masonry structures represent one of the commonest structural typologies for buildings worldwide. In particular, masonry walls constitute, by far, the prevailing elementary structural unit in the majority of masonry constructions both modern and historical. This contribution validates an approach proposed by the authors for the limit analysis masonry vaults, now extended to a new general procedure for the structural assessment of masonry walls with out-of-plane loading based on an upper bound formulation. A given masonry panel of arbitrary form possibly with openings is described through its NURBS (Non-Uniform Rational B-Spline) parametric representation in the three-dimensional Euclidean space. An initial set of rigid elements subdividing the original wall geometry is identified through the definition of a suitable lattice of nodes. An upper-bound limit analysis formulation, taking into account the main characteristics of masonry material through homogenization, is deduced where internal dissipation is allowed along element edges only. As shown in a number of examples, a good estimate of the collapse load is obtained, provided that the initial net of yield lines is suitably adjusted by means of a Genetic Algorithm (GA).
2017
COMPDYN 2017 - Proceedings of the 6th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering
9786188284418
Limit analysis; Masonry; Masonry walls; NURBS; Computational Mathematics; Computers in Earth Sciences; Geotechnical Engineering and Engineering Geology
File in questo prodotto:
File Dimensione Formato  
2017_COMPDYN_Chiozzi_Milani_Grillanda_Tralli.pdf

Accesso riservato

: Publisher’s version
Dimensione 594.38 kB
Formato Adobe PDF
594.38 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1049134
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact