NaOsO3 hosts a rare manifestation of a metal-insulator transition driven by magnetic correlations, placing the magnetic exchange interactions in a central role. We use resonant inelastic x-ray scattering to directly probe these magnetic exchange interactions. A dispersive and strongly gapped (58 meV) excitation is observed, indicating appreciable spin-orbit coupling in this 5d3 system. The excitation is well described within a minimal model Hamiltonian with strong anisotropy and Heisenberg exchange (J1=J2=13.9meV). The observed behavior places NaOsO3 on the boundary between localized and itinerant magnetism.

Strongly gapped spin-wave excitation in the insulating phase of NaOsO3

Moretti Sala, M.;
2017-01-01

Abstract

NaOsO3 hosts a rare manifestation of a metal-insulator transition driven by magnetic correlations, placing the magnetic exchange interactions in a central role. We use resonant inelastic x-ray scattering to directly probe these magnetic exchange interactions. A dispersive and strongly gapped (58 meV) excitation is observed, indicating appreciable spin-orbit coupling in this 5d3 system. The excitation is well described within a minimal model Hamiltonian with strong anisotropy and Heisenberg exchange (J1=J2=13.9meV). The observed behavior places NaOsO3 on the boundary between localized and itinerant magnetism.
2017
Electronic, Optical and Magnetic Materials; Condensed Matter Physics
File in questo prodotto:
File Dimensione Formato  
PhysRevB.95.020413.pdf

accesso aperto

: Publisher’s version
Dimensione 542.34 kB
Formato Adobe PDF
542.34 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1049004
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 23
social impact