The design and the combination of innovative metamaterials are attracting increasing interest in the scientific community because of their unique properties that go beyond the ones of natural materials. In particular, auxetic materials and phononic crystals are widely studied for their negative Poisson's ratio and their bandgap opening properties, respectively. In this work, auxeticity and phononic crystals bandgap properties are properly combined to obtain a single phase periodic structure with a tridimensional wide tunable bandgap. When an external tensile load is applied to the structure, the auxetic unit cells change their configurations by exploiting the negative Poisson's ratio and this results in the tuning, either hardening or softening, of the frequencies of the modes limiting the 3D bandgap. Moreover, the expansion of the unit cell in all the directions, due to the auxeticity property, guarantees a fully 3D bandgap tunability of the proposed structure. Numerical simulations and analytical models are proposed to prove the claimed properties. The first experimental evidence of the tunability of a wide 3D bandgap is then shown thanks to the fabrication of a prototype by means of additive manufacturing.

3D auxetic single material periodic structure with ultra-wide tunable bandgap

D'Alessandro, Luca;Zega, Valentina;Ardito, Raffaele;Corigliano, Alberto
2018-01-01

Abstract

The design and the combination of innovative metamaterials are attracting increasing interest in the scientific community because of their unique properties that go beyond the ones of natural materials. In particular, auxetic materials and phononic crystals are widely studied for their negative Poisson's ratio and their bandgap opening properties, respectively. In this work, auxeticity and phononic crystals bandgap properties are properly combined to obtain a single phase periodic structure with a tridimensional wide tunable bandgap. When an external tensile load is applied to the structure, the auxetic unit cells change their configurations by exploiting the negative Poisson's ratio and this results in the tuning, either hardening or softening, of the frequencies of the modes limiting the 3D bandgap. Moreover, the expansion of the unit cell in all the directions, due to the auxeticity property, guarantees a fully 3D bandgap tunability of the proposed structure. Numerical simulations and analytical models are proposed to prove the claimed properties. The first experimental evidence of the tunability of a wide 3D bandgap is then shown thanks to the fabrication of a prototype by means of additive manufacturing.
2018
Multidisciplinary
metamaterials
auxetic
File in questo prodotto:
File Dimensione Formato  
D-Alessandro_et_al-2018-Scientific_Reports.pdf

accesso aperto

Descrizione: Articolo principale
: Publisher’s version
Dimensione 2.66 MB
Formato Adobe PDF
2.66 MB Adobe PDF Visualizza/Apri
D-Alessandro_et_al-2018-Scientific_Reports.sup-1.pdf

accesso aperto

Descrizione: Materiale Supplementare
: Publisher’s version
Dimensione 1.85 MB
Formato Adobe PDF
1.85 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1048949
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 115
  • ???jsp.display-item.citation.isi??? 90
social impact