We investigate existence and uniqueness of solutions of the Cauchy problem for the porous medium equation on a class of Cartan–Hadamard manifolds. We suppose that the radial Ricci curvature, which is everywhere nonpositive as well as sectional curvatures, can diverge negatively at infinity with an at most quadratic rate: in this sense it is referred to as critical. The main novelty with respect to previous results is that, under such hypotheses, we are able to deal with unbounded initial data and solutions. Moreover, by requiring a matching bound from above on sectional curvatures, we can also prove a blow-up theorem in a suitable weighted space, for initial data that grow sufficiently fast at infinity.

Porous medium equations on manifolds with critical negative curvature: unbounded initial data

Muratori, Matteo;Punzo, Fabio
2018-01-01

Abstract

We investigate existence and uniqueness of solutions of the Cauchy problem for the porous medium equation on a class of Cartan–Hadamard manifolds. We suppose that the radial Ricci curvature, which is everywhere nonpositive as well as sectional curvatures, can diverge negatively at infinity with an at most quadratic rate: in this sense it is referred to as critical. The main novelty with respect to previous results is that, under such hypotheses, we are able to deal with unbounded initial data and solutions. Moreover, by requiring a matching bound from above on sectional curvatures, we can also prove a blow-up theorem in a suitable weighted space, for initial data that grow sufficiently fast at infinity.
2018
blow-up; negative curvature; Porous medium equation; Riemannian manifolds; unbounded data; Analysis; Applied Mathematics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1048942
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact