We present the design of the first Visible Light Sensing (VLS) system that consumes only tens of μWs of power to sense and communicate. Unlike most existing VLS systems, we require no modification to the existing light infrastructure since we use unmodulated light as a sensing medium. We achieve this by designing a novel mechanism that uses solar cells to achieve a sub-μW power consumption for sensing. Further, we devise an ultra-low power transmission mechanism that backscatters sensor readings and avoids the processing and computational overhead of existing sensor systems. Our initial results show the ability to detect and transmit hand gestures or presence of people up to distances of 330m, at a peak power of 20 μWs. Further, we demonstrate that our system can operate in diverse light conditions (100 lx to 80 klx) where existing VLS designs fail due to saturation of the transimpedance amplifier (TIA).

Battery-free visible light sensing

Mottola, Luca;
2017-01-01

Abstract

We present the design of the first Visible Light Sensing (VLS) system that consumes only tens of μWs of power to sense and communicate. Unlike most existing VLS systems, we require no modification to the existing light infrastructure since we use unmodulated light as a sensing medium. We achieve this by designing a novel mechanism that uses solar cells to achieve a sub-μW power consumption for sensing. Further, we devise an ultra-low power transmission mechanism that backscatters sensor readings and avoids the processing and computational overhead of existing sensor systems. Our initial results show the ability to detect and transmit hand gestures or presence of people up to distances of 330m, at a peak power of 20 μWs. Further, we demonstrate that our system can operate in diverse light conditions (100 lx to 80 klx) where existing VLS designs fail due to saturation of the transimpedance amplifier (TIA).
2017
VLCS 2017 - Proceedings of the 4th ACM Workshop on Visible Light Communication Systems, co-located with MobiCom 2017
9781450351423
Backscatter; Battery-free sensing; Visible Light Sensing; Hardware and Architecture; Computer Networks and Communications
File in questo prodotto:
File Dimensione Formato  
varshney17battery.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.37 MB
Formato Adobe PDF
2.37 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1048807
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 0
social impact