People's interaction with IoT devices such as proximity beacons, body-worn sensors, and controllable light bulbs is often mediated through personal mobile devices. Current approaches usually make applications operate in separate silos, as the functionality of IoT devices is fixed by vendors and typically accessed only through low-level proprietary APIs. This limits the flexibility in designing applications and requires intense wireless interactions, which may impact energy consumption. COIN is a system architecture that breaks this separation by allowing developers to flexibly run a slice of a mobile app's logic onto IoT devices. Mobile apps can dynamically deploy arbitrary tasks implemented as loosely coupled components. The underlying runtime support takes care of the coordination across tasks and of their real-time scheduling. Our prototype indicates that COIN both enables increased flexibility and improves energy efficiency at the IoT device, compared to traditional architectures.
COIN: Opening the internet of things to people's mobile devices
Mottola, Luca;Mainetti, Luca;
2017-01-01
Abstract
People's interaction with IoT devices such as proximity beacons, body-worn sensors, and controllable light bulbs is often mediated through personal mobile devices. Current approaches usually make applications operate in separate silos, as the functionality of IoT devices is fixed by vendors and typically accessed only through low-level proprietary APIs. This limits the flexibility in designing applications and requires intense wireless interactions, which may impact energy consumption. COIN is a system architecture that breaks this separation by allowing developers to flexibly run a slice of a mobile app's logic onto IoT devices. Mobile apps can dynamically deploy arbitrary tasks implemented as loosely coupled components. The underlying runtime support takes care of the coordination across tasks and of their real-time scheduling. Our prototype indicates that COIN both enables increased flexibility and improves energy efficiency at the IoT device, compared to traditional architectures.File | Dimensione | Formato | |
---|---|---|---|
stefanizzi17coin.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
1.56 MB
Formato
Adobe PDF
|
1.56 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.