In this article, a computationally effective strategy to obtain multioverlapping controllers via the inclusion principle is applied to design a state-feedback multioverlapping linear-quadratic regulator controller for a 20-story building. The proposed semidecentralized controller only requires state information of neighboring stories to compute the corresponding control actions. This particular information exchange configuration allows introducing a dramatic reduction in the transmission range required for a wireless implementation of the communications system. More specifically, just a one-story transmission range is required by the proposed multioverlapping controller, while a full-building transmission range would be necessary in a classical centralized design. From a computational point of view, the presented design strategy only involves the actual computation of a reduced set of low-dimension controllers. The numerical simulations indicate that despite the simplified low-dimension design and the severe information exchange constraints, the proposed semidecentralized multioverlapping controller achieves a surprisingly high level of seismic attenuation when compared with the centralized linear-quadratic regulator controller. © 2012 IMechE.

Sequential design of multioverlapping controllers for structural vibration control of tall buildings under seismic excitation

Karimi, Hamid R;
2013-01-01

Abstract

In this article, a computationally effective strategy to obtain multioverlapping controllers via the inclusion principle is applied to design a state-feedback multioverlapping linear-quadratic regulator controller for a 20-story building. The proposed semidecentralized controller only requires state information of neighboring stories to compute the corresponding control actions. This particular information exchange configuration allows introducing a dramatic reduction in the transmission range required for a wireless implementation of the communications system. More specifically, just a one-story transmission range is required by the proposed multioverlapping controller, while a full-building transmission range would be necessary in a classical centralized design. From a computational point of view, the presented design strategy only involves the actual computation of a reduced set of low-dimension controllers. The numerical simulations indicate that despite the simplified low-dimension design and the severe information exchange constraints, the proposed semidecentralized multioverlapping controller achieves a surprisingly high level of seismic attenuation when compared with the centralized linear-quadratic regulator controller. © 2012 IMechE.
2013
Large-scale systems; Multioverlapping controller; Seismic protection; Structural vibration control; Tall buildings; Wireless control implementation; Control and Systems Engineering; Mechanical Engineering
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1047444
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact