The relevance of forecasting in renewable energy sources (RES) applications is increasing, due to their intrinsic variability. In recent years, several machine learning and hybrid techniques have been employed to perform day-ahead photovoltaic (PV) output power forecasts. In this paper, the authors present a comparison of the artificial neural network's main characteristics used in a hybrid method, focusing in particular on the training approach. In particular, the influence of different data-set composition affecting the forecast outcome have been inspected by increasing the training dataset size and by varying the training and validation shares, in order to assess the most effective training method of this machine learning approach, based on commonly used and a newly-defined performance indexes for the prediction error. The results will be validated over a one-year time range of experimentally measured data. Novel error metrics are proposed and compared with traditional ones, showing the best approach for the different cases of either a newly deployed PV plant or an already-existing PV facility.

Comparison of training approaches for photovoltaic forecasts by means of machine learning

Dolara, Alberto;Grimaccia, Francesco;Leva, Sonia;Mussetta, Marco;Ogliari, Emanuele
2018-01-01

Abstract

The relevance of forecasting in renewable energy sources (RES) applications is increasing, due to their intrinsic variability. In recent years, several machine learning and hybrid techniques have been employed to perform day-ahead photovoltaic (PV) output power forecasts. In this paper, the authors present a comparison of the artificial neural network's main characteristics used in a hybrid method, focusing in particular on the training approach. In particular, the influence of different data-set composition affecting the forecast outcome have been inspected by increasing the training dataset size and by varying the training and validation shares, in order to assess the most effective training method of this machine learning approach, based on commonly used and a newly-defined performance indexes for the prediction error. The results will be validated over a one-year time range of experimentally measured data. Novel error metrics are proposed and compared with traditional ones, showing the best approach for the different cases of either a newly deployed PV plant or an already-existing PV facility.
2018
Artificial neural networks; Photovoltaics; Power forecasting; Materials Science (all); Instrumentation; Engineering (all); Process Chemistry and Technology; Computer Science Applications1707 Computer Vision and Pattern Recognition; Fluid Flow and Transfer Processes
File in questo prodotto:
File Dimensione Formato  
applsci-08-00228.pdf

accesso aperto

: Publisher’s version
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1045672
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 37
social impact