The aim of this study was to evaluate the effect of an in vitro mechanical stimulation by the use of a bioreactor on an engineered tendon for 7 and 14 days and to analyze the effect of the use of different cell sources: tenocytes, dermal fibroblasts or Adipose-Derived Stem Cells (ASCs), isolated from pig tissues. Histology showed a re-organization of the neo-tissue derived from the three cell populations along the direction of the stimulus. At T7, cells morphology was preserved while an increased cellular suffering at T14 was observed for all cell populations. Tenocytes exhibited higher survival than other cells. A stable immunopositivity for collagen type 1 or 3 at both time points was also observed. In conclusion, dermal fibroblasts and ASCs represent an interesting alternative and in vitro culture with mechanical stimuli may enhance the maturation of a tendon-like tissue.
Comparison between different cell sources and culture strategies for tendon tissue engineering
Raimondi, M. T.;Boschetti, F.;
2017-01-01
Abstract
The aim of this study was to evaluate the effect of an in vitro mechanical stimulation by the use of a bioreactor on an engineered tendon for 7 and 14 days and to analyze the effect of the use of different cell sources: tenocytes, dermal fibroblasts or Adipose-Derived Stem Cells (ASCs), isolated from pig tissues. Histology showed a re-organization of the neo-tissue derived from the three cell populations along the direction of the stimulus. At T7, cells morphology was preserved while an increased cellular suffering at T14 was observed for all cell populations. Tenocytes exhibited higher survival than other cells. A stable immunopositivity for collagen type 1 or 3 at both time points was also observed. In conclusion, dermal fibroblasts and ASCs represent an interesting alternative and in vitro culture with mechanical stimuli may enhance the maturation of a tendon-like tissue.File | Dimensione | Formato | |
---|---|---|---|
Di Giancamillo et al 2017.pdf
Accesso riservato
:
Publisher’s version
Dimensione
2.84 MB
Formato
Adobe PDF
|
2.84 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.