Tonometers are intended to determine the intraocular pressure (IOP) and the quality of corneal tissue. In contrast to the physiological state of stress of the cornea, tonometers induce non-physiological bending stress. Recently, the use of a single experiment to calibrate a set of corneal mechanical properties was suggested to be an ill-posed problem. Thus, we propose a numerical-experimental protocol that uses inflation and indentation experiments simultaneously, restricting the optimization space to circumvent the ambiguity of the fitting. For the first time, both corneal behaviors, i.e., biaxial tension (physiological) and bending (non-physiological), are taken into account. The experimental protocol was performed using an animal model (New Zealand rabbit's cornea). The patient-specific geometry and IOP were registered using a MODI topographer (CSO, Italy) and an applanation tonometer, respectively. The mechanical response was evaluated using inflation and indentation experiments. Subsequently, the optimal set of material properties is identified via an inverse finite element method. To validate the methodology, an in vivo incisional refractive surgery (astigmatic keratotomy, AK) is performed on four animals. The optical outcomes showed a good agreement between the real and simulated surgeries, indicating that the protocol can provide a reliable set of mechanical properties that enables further applications and simulations. After a reliable ex vivo database of inflation experiments is built, our protocol could be extended to humans.

A numerical-experimental protocol to characterize corneal tissue with an application to predict astigmatic keratotomy surgery

Rodriguez Matas, J. F.;
2017-01-01

Abstract

Tonometers are intended to determine the intraocular pressure (IOP) and the quality of corneal tissue. In contrast to the physiological state of stress of the cornea, tonometers induce non-physiological bending stress. Recently, the use of a single experiment to calibrate a set of corneal mechanical properties was suggested to be an ill-posed problem. Thus, we propose a numerical-experimental protocol that uses inflation and indentation experiments simultaneously, restricting the optimization space to circumvent the ambiguity of the fitting. For the first time, both corneal behaviors, i.e., biaxial tension (physiological) and bending (non-physiological), are taken into account. The experimental protocol was performed using an animal model (New Zealand rabbit's cornea). The patient-specific geometry and IOP were registered using a MODI topographer (CSO, Italy) and an applanation tonometer, respectively. The mechanical response was evaluated using inflation and indentation experiments. Subsequently, the optimal set of material properties is identified via an inverse finite element method. To validate the methodology, an in vivo incisional refractive surgery (astigmatic keratotomy, AK) is performed on four animals. The optical outcomes showed a good agreement between the real and simulated surgeries, indicating that the protocol can provide a reliable set of mechanical properties that enables further applications and simulations. After a reliable ex vivo database of inflation experiments is built, our protocol could be extended to humans.
2017
Astigmatic keratotomy; Corneal mechanics; Corneal optics; Corneal tissue; Inverse finite element methodology; Biomaterials; Biomedical Engineering; Mechanics of Materials
File in questo prodotto:
File Dimensione Formato  
2017-JMBBM_Ariza.pdf

Accesso riservato

: Publisher’s version
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1045548
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact