Functional mitral regurgitation (FMR) is a complex pathology involving valvular and subvalvular structures reconfiguration, and its treatment is considered challenging. There is a lack of experimental models allowing for reliable preclinical FMR treatments’ evaluation in a realistic setting. A novel approach to simulate FMR was developed and incorporated into an ex vivo passive beating heart platform. FMR was obtained by dilating the mitral annulus (MA) mainly in the antero-posterior direction and displacing the papillary muscles (PMs) apically and laterally by ad hoc designed and 3D printed dilation and displacing devices. It caused hemodynamic and valve morphology alterations. Isolated MA dilation (MAD) led to significantly increased antero-posterior distance (A-P) and decreased coaptation height (CH), tenting area (TA) and systolic leaflets angulation, resembling clinically recognized type I of mitral regurgitation with normal leaflet motion. Whereas concomitant MAD with PM displacement caused an increase in A-P, TA, CH. This geometrical configuration replicated typical determinants of type IIIb lesion with restricted leaflet motion. The proposed methods provided a realistic and repeatable ex vivo FMR model featuring two lesions clinically associated with the pathology. It bears a promise to be successfully utilized in preclinical studies, clinical training and medical education.

Modelling of Lesions Associated with Functional Mitral Regurgitation in an Ex Vivo Platform

Jaworek, Michal;Lucherini, Federico;Fiore, Gianfranco B.;Vismara, Riccardo
2017-01-01

Abstract

Functional mitral regurgitation (FMR) is a complex pathology involving valvular and subvalvular structures reconfiguration, and its treatment is considered challenging. There is a lack of experimental models allowing for reliable preclinical FMR treatments’ evaluation in a realistic setting. A novel approach to simulate FMR was developed and incorporated into an ex vivo passive beating heart platform. FMR was obtained by dilating the mitral annulus (MA) mainly in the antero-posterior direction and displacing the papillary muscles (PMs) apically and laterally by ad hoc designed and 3D printed dilation and displacing devices. It caused hemodynamic and valve morphology alterations. Isolated MA dilation (MAD) led to significantly increased antero-posterior distance (A-P) and decreased coaptation height (CH), tenting area (TA) and systolic leaflets angulation, resembling clinically recognized type I of mitral regurgitation with normal leaflet motion. Whereas concomitant MAD with PM displacement caused an increase in A-P, TA, CH. This geometrical configuration replicated typical determinants of type IIIb lesion with restricted leaflet motion. The proposed methods provided a realistic and repeatable ex vivo FMR model featuring two lesions clinically associated with the pathology. It bears a promise to be successfully utilized in preclinical studies, clinical training and medical education.
2017
In vitro; Ischemic mitral regurgitation; Mitral regurgitation; Mitral valve; Passive beating heart; Valvular pathology modelling; Biomedical Engineering
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1045507
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact