Nonlinear analysis has been advocated as a very powerful methodological framework to study physiological signals, particularly when applied to heartbeat dynamics. To this extent, estimation of high-frequency (0.15-0.40 Hz) power from bispectra of cardiovascular variability series has been engaged as a marker of nonlinear vagal activity. Nevertheless, a proper validation of this specific measure has not been yet performed. In this study, we estimate instantaneous, nonlinear bispectral indices during postural changes under sympathetic and parasympathetic nervous system blockade. The analysis was performed on data from 14 healthy subjects undergoing a control supine-to-upright routine where they were selectively administered either atropine or propanolol. Instantaneous bispectra were obtained through Laguerre-transformed, linear and nonlinear kernels of a Wiener-Volterra model applied to heartbeat dynamics, embedded into a recently proposed inhomogeneous point-process framework. Results demonstrate that the integration of bispectra accounting for nonlinear cardiovascular control dynamics within the high-frequency band provides potentially reliable markers of vagal activity.
Validation of instantaneous bispectral high-frequency power of heartbeat dynamics as a marker of cardiac vagal activity
Scilingo, Enzo Pasquale;Barbieri, Riccardo
2017-01-01
Abstract
Nonlinear analysis has been advocated as a very powerful methodological framework to study physiological signals, particularly when applied to heartbeat dynamics. To this extent, estimation of high-frequency (0.15-0.40 Hz) power from bispectra of cardiovascular variability series has been engaged as a marker of nonlinear vagal activity. Nevertheless, a proper validation of this specific measure has not been yet performed. In this study, we estimate instantaneous, nonlinear bispectral indices during postural changes under sympathetic and parasympathetic nervous system blockade. The analysis was performed on data from 14 healthy subjects undergoing a control supine-to-upright routine where they were selectively administered either atropine or propanolol. Instantaneous bispectra were obtained through Laguerre-transformed, linear and nonlinear kernels of a Wiener-Volterra model applied to heartbeat dynamics, embedded into a recently proposed inhomogeneous point-process framework. Results demonstrate that the integration of bispectra accounting for nonlinear cardiovascular control dynamics within the high-frequency band provides potentially reliable markers of vagal activity.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.