This paper proposes a new perspective on the problem of multidimensional spectral factorization, through helical mapping: d-dimensional (dD) data arrays are vectorized, processed by 1D cepstral analysis and then remapped onto the original space. Partial differential equations (PDEs) are the basic framework to describe the evolution of physical phenomena. We observe that the minimum phase helical solution asymptotically converges to the dD semi-causal solution, and allows us to decouple the two solutions arising from PDEs describing physical systems. We prove this equivalence in the theoretical framework of cepstral analysis, and we also illustrate the validity of helical factorization through a 2D wave propagation example and a 3D application to helioseismology.

Multidimensional factorization through helical mapping

Spagnolini, Umberto
2017-01-01

Abstract

This paper proposes a new perspective on the problem of multidimensional spectral factorization, through helical mapping: d-dimensional (dD) data arrays are vectorized, processed by 1D cepstral analysis and then remapped onto the original space. Partial differential equations (PDEs) are the basic framework to describe the evolution of physical phenomena. We observe that the minimum phase helical solution asymptotically converges to the dD semi-causal solution, and allows us to decouple the two solutions arising from PDEs describing physical systems. We prove this equivalence in the theoretical framework of cepstral analysis, and we also illustrate the validity of helical factorization through a 2D wave propagation example and a 3D application to helioseismology.
2017
Blind deconvolution; Causality; Cepstral analysis; Minimum phase; Multidimensional filtering; Spectral factorization; Control and Systems Engineering; Software; Signal Processing; 1707; Electrical and Electronic Engineering
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1045319
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact