In this paper, we propose a modification of the standard Equivalent Source Method (ESM) for Near-Field Acoustic Holography (NAH). As in EMS, we aim at modeling the acoustic pressure radiated from a vibrating object, and its surface velocity, as the joint effect of a set of equivalent sources located within or close to the object itself. The estimation of the equivalent source strengths (weigths) comes from the solution of a highly ill-conditioned problem. Rather than solving this problem in the least-squares sense, we exploit the 3D model of the vibrating object, along with a rough estimate of its physical parameters, to restrict the space of the solutions. More specifically, we make use of Finite Element Analysis for populating a compressed dictionary of possible equivalent source weights. NAH is then approached by seeking a sparse linear combination of the entries of the dictionary. Experiments carried on a public database prove the effectiveness of the proposed technique, especially when the number of available microphones is limited, and in the presence of a significant level of measurement noise.

Dictionary-based Equivalent Source Method for Near-Field Acoustic Holography

Canclini, Antonio;Antonacci, Fabio;Sarti, Augusto
2017-01-01

Abstract

In this paper, we propose a modification of the standard Equivalent Source Method (ESM) for Near-Field Acoustic Holography (NAH). As in EMS, we aim at modeling the acoustic pressure radiated from a vibrating object, and its surface velocity, as the joint effect of a set of equivalent sources located within or close to the object itself. The estimation of the equivalent source strengths (weigths) comes from the solution of a highly ill-conditioned problem. Rather than solving this problem in the least-squares sense, we exploit the 3D model of the vibrating object, along with a rough estimate of its physical parameters, to restrict the space of the solutions. More specifically, we make use of Finite Element Analysis for populating a compressed dictionary of possible equivalent source weights. NAH is then approached by seeking a sparse linear combination of the entries of the dictionary. Experiments carried on a public database prove the effectiveness of the proposed technique, especially when the number of available microphones is limited, and in the presence of a significant level of measurement noise.
2017
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
9781509041176
Equivalent Source Method; Microphone arrays; Modal Analysis; Near-field acoustic holography; Software; Signal Processing; Electrical and Electronic Engineering
File in questo prodotto:
File Dimensione Formato  
07952139.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 4.86 MB
Formato Adobe PDF
4.86 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1045162
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact