The use of natural or bioinspired materials to develop edible electronic devices is a potentially disruptive technology that can boost point-of-care testing. The technology exploits devices that can be safely ingested, along with pills or even food, and operated from within the gastrointestinal tract. Ingestible electronics can potentially target a significant number of biomedical applications, both as therapeutic and diagnostic tool, and this technology may also impact the food industry, by providing ingestible or food-compatible electronic tags that can "smart" track goods and monitor their quality along the distribution chain. Temporary tattoo-paper is hereby proposed as a simple and versatile platform for the integration of electronics onto food and pharmaceutical capsules. In particular, the fabrication of all-printed organic field-effect transistors on untreated commercial tattoo-paper, and their subsequent transfer and operation on edible substrates with a complex nonplanar geometry is demonstrated.

Tattoo-Paper Transfer as a Versatile Platform for All-Printed Organic Edible Electronics

Bossio, Caterina;GRECO, FRANCESCO GIOVANNI;Lanzani, Guglielmo;
2018

Abstract

The use of natural or bioinspired materials to develop edible electronic devices is a potentially disruptive technology that can boost point-of-care testing. The technology exploits devices that can be safely ingested, along with pills or even food, and operated from within the gastrointestinal tract. Ingestible electronics can potentially target a significant number of biomedical applications, both as therapeutic and diagnostic tool, and this technology may also impact the food industry, by providing ingestible or food-compatible electronic tags that can "smart" track goods and monitor their quality along the distribution chain. Temporary tattoo-paper is hereby proposed as a simple and versatile platform for the integration of electronics onto food and pharmaceutical capsules. In particular, the fabrication of all-printed organic field-effect transistors on untreated commercial tattoo-paper, and their subsequent transfer and operation on edible substrates with a complex nonplanar geometry is demonstrated.
ADVANCED MATERIALS
Cytotoxicity; Edible electronics; Organic bioelectronics; Printed electronics; Tattoo-paper; Materials Science (all); Mechanics of Materials; Mechanical Engineering
File in questo prodotto:
File Dimensione Formato  
11311-1044685_Lanzani.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.66 MB
Formato Adobe PDF
2.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/1044685
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 51
social impact