Martensitic Ti-rich NiTi intermetallics are broadly used in various cyclic applications as actuators, which exploit the shape memory effect (SME). Recently, a new approach for exploiting austenitic Ni-rich NiTi shape memory alloys as actuators was proposed and named high-performance shape memory effect (HP-SME). HP-SME is based on thermal recovery of de-twinned martensite produced by mechanical loading of the parent phase. The aim of the manuscript consists in evaluating and comparing the fatigue and actuation properties of austenitic HP-SME wires and conventional martensitic SME wires. The effect of the thermomechanical cycling on the actuation response and the changes in the electrical resistivity of both shape memory materials were studied by performing the actuation tests at different stages of the fatigue life. Finally, the changes in the transition temperatures before and after cycling were also investigated by differential calorimetric tests.

Improved Functional Properties and Efficiencies of Nitinol Wires Under High-Performance Shape Memory Effect (HP-SME)

Casati, R.;Biffi, C. A.;Vedani, M.;Tuissi, A.
2017

Abstract

Martensitic Ti-rich NiTi intermetallics are broadly used in various cyclic applications as actuators, which exploit the shape memory effect (SME). Recently, a new approach for exploiting austenitic Ni-rich NiTi shape memory alloys as actuators was proposed and named high-performance shape memory effect (HP-SME). HP-SME is based on thermal recovery of de-twinned martensite produced by mechanical loading of the parent phase. The aim of the manuscript consists in evaluating and comparing the fatigue and actuation properties of austenitic HP-SME wires and conventional martensitic SME wires. The effect of the thermomechanical cycling on the actuation response and the changes in the electrical resistivity of both shape memory materials were studied by performing the actuation tests at different stages of the fatigue life. Finally, the changes in the transition temperatures before and after cycling were also investigated by differential calorimetric tests.
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
functional properties; NiTi; shape memory wires; thermomechanical cycling; Materials Science (all); Mechanics of Materials; Mechanical Engineering
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/1043496
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact