Automatic Weather Stations (AWSs) are systems equipped with a number of environmental sensors and communication interfaces used to monitor harsh environments, such as glaciers and deserts. Designing such systems is challenging, since designers have to maximize the amount of sampled and transmitted data while considering the energy needs of the system that, in most cases, is powered by rechargeable batteries and exploits energy harvesting, e.g., solar cells and wind turbines. To support designers of AWSs in the definition of the software tasks and of the hardware configuration of the AWS we designed and implemented an energy-aware simulator of such systems. The simulator relies on the Stochastic Activity Networks (SANs) formalism and has been developed using the Möbius tool. In this paper we first show how we used the SAN formalism to model the various components of an AWS, we then report results from an experiment carried out to validate the simulator against a real-world AWS and we finally show some examples of usage of the proposed simulator.

Using stochastic activity networks to study the energy feasibility of automatic weather stations

Cassano, Luca;
2015-01-01

Abstract

Automatic Weather Stations (AWSs) are systems equipped with a number of environmental sensors and communication interfaces used to monitor harsh environments, such as glaciers and deserts. Designing such systems is challenging, since designers have to maximize the amount of sampled and transmitted data while considering the energy needs of the system that, in most cases, is powered by rechargeable batteries and exploits energy harvesting, e.g., solar cells and wind turbines. To support designers of AWSs in the definition of the software tasks and of the hardware configuration of the AWS we designed and implemented an energy-aware simulator of such systems. The simulator relies on the Stochastic Activity Networks (SANs) formalism and has been developed using the Möbius tool. In this paper we first show how we used the SAN formalism to model the various components of an AWS, we then report results from an experiment carried out to validate the simulator against a real-world AWS and we finally show some examples of usage of the proposed simulator.
2015
AIP Conference Proceedings
9780735412873
Automatic Weather Stations; Energy Harvesting; Power Models; Sensing; Simulation; Stochastic Activity Networks; Physics and Astronomy (all)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1043184
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact