Non-destructive vibration based methods can be used as diagnostic tool to identify damage in structures. Periodic inspections or permanent monitoring networks of sensors can indicate the emergence of possible damage occurring during the structure lifetime. Several methods have been proposed in literature for damage identification purposes. Some of them allow detecting the existence of damage, others provide information about its location as well. Data driven method are able to localize damage based solely on responses recorded on the structure without the need of a Finite Element model. Many of these methods are based on the detection of irregularities in the deformed shape of the structure: modal or operational shapes have been proposed to this purpose by different authors. The reliability of the methods proposed in literature is often verified on numerical models that, by their nature, cannot reproduce all the sources of uncertainties-environmental, operational, experimental-that affect responses recorded of the structure. The availability of data recorded on real structures provides precious material for the check of damage identification methods. In this paper the performance of the Interpolation Method for damage localization is investigated with reference to the real case study of a prestressed concrete road bridge, the S101 Bridge in Austria. The bridge, built in the early 1960, is a typical example of a European highway bridge. Responses to ambient vibration have been recorded both in the undamaged and in several different damage scenarios artificially inflicted to the bridge. Damage was introduced by lowering one of the bridge piers and by cutting prestressing tendons of one beam of the bridge deck.

Non-destructive monitoring of a prestressed bridge with a data-driven method

Limongelli, M. P.;
2017-01-01

Abstract

Non-destructive vibration based methods can be used as diagnostic tool to identify damage in structures. Periodic inspections or permanent monitoring networks of sensors can indicate the emergence of possible damage occurring during the structure lifetime. Several methods have been proposed in literature for damage identification purposes. Some of them allow detecting the existence of damage, others provide information about its location as well. Data driven method are able to localize damage based solely on responses recorded on the structure without the need of a Finite Element model. Many of these methods are based on the detection of irregularities in the deformed shape of the structure: modal or operational shapes have been proposed to this purpose by different authors. The reliability of the methods proposed in literature is often verified on numerical models that, by their nature, cannot reproduce all the sources of uncertainties-environmental, operational, experimental-that affect responses recorded of the structure. The availability of data recorded on real structures provides precious material for the check of damage identification methods. In this paper the performance of the Interpolation Method for damage localization is investigated with reference to the real case study of a prestressed concrete road bridge, the S101 Bridge in Austria. The bridge, built in the early 1960, is a typical example of a European highway bridge. Responses to ambient vibration have been recorded both in the undamaged and in several different damage scenarios artificially inflicted to the bridge. Damage was introduced by lowering one of the bridge piers and by cutting prestressing tendons of one beam of the bridge deck.
2017
HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS 2017
9781510608252
Ambient vibrations; Bridge S101; Damage localization; Data driven; Interpolation Method; Electronic, Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic Engineering
File in questo prodotto:
File Dimensione Formato  
1017033.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 437.99 kB
Formato Adobe PDF
437.99 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1042800
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
social impact