We present a constitutive model for stochastically distributed fiber reinforced visco-active tissues, where the behavior of the reinforcement depends on the relative orientation of the electric field. Following our previous works, for the passive behaviors we adopt a second order approximation of the strain energy density associated to the parameters of the fiber distribution. Consistently, we also assume that the active behavior accounts for the stochastic distribution of the fibers. The ensuing mechanical quantities result to be dependent on two average structure tensors. We introduce an extended Helmholtz free energy density characterized by the inclusion of a directional active potential, dependent on a stochastic anisotropic permittivity tensor. The permittivity tensor is expanded in Taylor series up to the second order, allowing to obtain an approximated active potential with the same structure of the passive Helmholtz free energy density. In particular, the explicit expression of active stress and stiffness are dependent on the two average structure tensors that characterize the passive response. Anisotropy follows from the fiber distribution and inherits its stochastic nature through statistics parameters. The active fiber distributed model is extended here to viscous materials by including the contribution of a dual dissipation potential in the variational formulation of the constitutive updates. Additionally, we present a computational example of application of the electro-viscous-mechanical material model by simulating peristaltic contractions on a portion of human intestine. © 2017 Springer Science+Business Media Dordrecht

Visco-electro-elastic models of fiber-distributed active tissues

PANDOLFI, ANNA MARINA;
2017-01-01

Abstract

We present a constitutive model for stochastically distributed fiber reinforced visco-active tissues, where the behavior of the reinforcement depends on the relative orientation of the electric field. Following our previous works, for the passive behaviors we adopt a second order approximation of the strain energy density associated to the parameters of the fiber distribution. Consistently, we also assume that the active behavior accounts for the stochastic distribution of the fibers. The ensuing mechanical quantities result to be dependent on two average structure tensors. We introduce an extended Helmholtz free energy density characterized by the inclusion of a directional active potential, dependent on a stochastic anisotropic permittivity tensor. The permittivity tensor is expanded in Taylor series up to the second order, allowing to obtain an approximated active potential with the same structure of the passive Helmholtz free energy density. In particular, the explicit expression of active stress and stiffness are dependent on the two average structure tensors that characterize the passive response. Anisotropy follows from the fiber distribution and inherits its stochastic nature through statistics parameters. The active fiber distributed model is extended here to viscous materials by including the contribution of a dual dissipation potential in the variational formulation of the constitutive updates. Additionally, we present a computational example of application of the electro-viscous-mechanical material model by simulating peristaltic contractions on a portion of human intestine. © 2017 Springer Science+Business Media Dordrecht
2017
Anisotropy; Electric fields; Fibers; Free energy; Histology; Image processing; Permittivity; Reinforcement; Stochastic systems; Strain energy; Tissue, Anisotropic permittivity; Dissipation potential; Fiber distribution; Multiplicative decomposition; Second-order approximation; Stochastic distribution; Variance approximation; Variational formulation, Tensors; Electro-visco-elasto-mechanics; Fiber distribution; Multiplicative decomposition; Variance approximation
File in questo prodotto:
File Dimensione Formato  
Meccanica_ActiveViscous_submitted.pdf

Accesso riservato

: Pre-Print (o Pre-Refereeing)
Dimensione 2.19 MB
Formato Adobe PDF
2.19 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1042778
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 15
social impact