A numerical method for the two-dimensional, incompressible Navier–Stokes equations in vorticity-streamfunction form is proposed, which employs semi-Lagrangian discretizations for both the advection and diffusion terms, thus achieving unconditional stability without the need to solve linear systems beyond that required by the Poisson solver for the recon- struction of the streamfunction. A description of the discretization of Dirichlet boundary conditions for the semi-Lagrangian approach to diffusion terms is also presented. Numeri- cal experiments on classical benchmarks for incompressible flow in simple geometries val- idate the proposed method.

A fully semi-Lagrangian discretization for the 2D incompressible Navier–Stokes equations in the vorticity-streamfunction formulation

L. Bonaventura;
2018-01-01

Abstract

A numerical method for the two-dimensional, incompressible Navier–Stokes equations in vorticity-streamfunction form is proposed, which employs semi-Lagrangian discretizations for both the advection and diffusion terms, thus achieving unconditional stability without the need to solve linear systems beyond that required by the Poisson solver for the recon- struction of the streamfunction. A description of the discretization of Dirichlet boundary conditions for the semi-Lagrangian approach to diffusion terms is also presented. Numeri- cal experiments on classical benchmarks for incompressible flow in simple geometries val- idate the proposed method.
2018
Semi-Lagrangian methods Advection–diffusion equations Navier–Stokes equations Vorticity-streamfunction formulation
File in questo prodotto:
File Dimensione Formato  
bonaventura_ferretti_2018.pdf

Accesso riservato

Descrizione: Articolo principale
: Publisher’s version
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF   Visualizza/Apri
11311-104109_Bonaventura.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 439.45 kB
Formato Adobe PDF
439.45 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1041090
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 13
social impact