Big Data is an emerging area and concerns managing datasets whose size is beyond commonly used software tools ability to capture, process, and perform analyses in a timely way. The Big Data software market is growing at 32% compound annual rate, almost four times more than the whole ICT market, and the quantity of data to be analyzed is expected to double every two years. Security and privacy are becoming very urgent Big Data aspects that need to be tackled. Indeed, users share more and more personal data and user-generated content through their mobile devices and computers to social networks and cloud services, losing data and content control with a serious impact on their own privacy. Privacy is one area that had a serious debate recently, and many governments require data providers and companies to protect users’ sensitive data. To mitigate these problems, many solutions have been developed to provide data privacy but, unfortunately, they introduce some computational overhead when data is processed. The goal of this paper is to quantitatively evaluate the performance and cost impact of multiple privacy protection mechanisms. A real industry case study concerning tax fraud detection has been considered. Many experiments have been performed to analyze the performance degradation and additional cost (required to provide a given service level) for running applications in a cloud system.

Performance Degradation and Cost Impact Evaluation of Privacy Preserving Mechanisms in Big Data Systems

E. Gianniti;D. Ardagna
2018

Abstract

Big Data is an emerging area and concerns managing datasets whose size is beyond commonly used software tools ability to capture, process, and perform analyses in a timely way. The Big Data software market is growing at 32% compound annual rate, almost four times more than the whole ICT market, and the quantity of data to be analyzed is expected to double every two years. Security and privacy are becoming very urgent Big Data aspects that need to be tackled. Indeed, users share more and more personal data and user-generated content through their mobile devices and computers to social networks and cloud services, losing data and content control with a serious impact on their own privacy. Privacy is one area that had a serious debate recently, and many governments require data providers and companies to protect users’ sensitive data. To mitigate these problems, many solutions have been developed to provide data privacy but, unfortunately, they introduce some computational overhead when data is processed. The goal of this paper is to quantitatively evaluate the performance and cost impact of multiple privacy protection mechanisms. A real industry case study concerning tax fraud detection has been considered. Many experiments have been performed to analyze the performance degradation and additional cost (required to provide a given service level) for running applications in a cloud system.
New Frontiers in Quantitative Methods in Informatics. InfQ 2017
978-3-319-91632-3
Big Data, Privacy, Performance impact, Cost impact
File in questo prodotto:
File Dimensione Formato  
Safia-paper-modified-short-final.pdf

accesso aperto

Descrizione: Articolo principale
: Pre-Print (o Pre-Refereeing)
Dimensione 484.37 kB
Formato Adobe PDF
484.37 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/1040008
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact