The behavior of super duplex stainless steels AISI F55-UNS S32760 in hot-dip aluminizing process has been studied, investigating the influence of cold working and of different initial microstructures obtained through a preliminary thermal treatment. The microstructural features examined are the secondary austenite precipitation, the static recovery of ferrite and the thermal dissolution of austenite within ferritic matrix. The hot-dip aluminizing temperature has been optimized through sessile drop tests. The treatment has been performed at 1100 °C for 300 s, 900 s and 2700 s. A strong chemical interaction occurs, generating intermetallic compounds at the interface. Molten aluminum interacts exclusively with the ferritic phase due to its much higher diffusivity in this phase coupled with its marked ferrite-stabilizer behavior. Thus, the influence of cold working is not remarkable, since the strains are mainly allocated by austenitic phase. The diffusivity of aluminum increases due to lattice defects thermally generated and, mainly, to influence given by grain boundaries, multiplied by secondary austenite precipitation, which act as short-circuit diffusion paths. Ni and Cr contents in the ferritic matrix have an influence but not highly relevant. Then, the best starting condition of the super duplex stainless steel substrates, to obtain a thick interfacial layer, are the thermal annealing at 1080 °C for 360 s/mm after a solution thermal treatment at 1300 °C for 60 s/mm.

Hot-dip aluminizing on AISI F55-UNS S32760 super duplex stainless steel properties: Effect of thermal treatments

Ciuffini, Andrea Francesco;Barella, Silvia;Gruttadauria, Andrea;Mombelli, Davide;Mapelli, Carlo
2017-01-01

Abstract

The behavior of super duplex stainless steels AISI F55-UNS S32760 in hot-dip aluminizing process has been studied, investigating the influence of cold working and of different initial microstructures obtained through a preliminary thermal treatment. The microstructural features examined are the secondary austenite precipitation, the static recovery of ferrite and the thermal dissolution of austenite within ferritic matrix. The hot-dip aluminizing temperature has been optimized through sessile drop tests. The treatment has been performed at 1100 °C for 300 s, 900 s and 2700 s. A strong chemical interaction occurs, generating intermetallic compounds at the interface. Molten aluminum interacts exclusively with the ferritic phase due to its much higher diffusivity in this phase coupled with its marked ferrite-stabilizer behavior. Thus, the influence of cold working is not remarkable, since the strains are mainly allocated by austenitic phase. The diffusivity of aluminum increases due to lattice defects thermally generated and, mainly, to influence given by grain boundaries, multiplied by secondary austenite precipitation, which act as short-circuit diffusion paths. Ni and Cr contents in the ferritic matrix have an influence but not highly relevant. Then, the best starting condition of the super duplex stainless steel substrates, to obtain a thick interfacial layer, are the thermal annealing at 1080 °C for 360 s/mm after a solution thermal treatment at 1300 °C for 60 s/mm.
2017
Diffusion; Hot-dip aluminizing; Steel aluminum interface; Super duplex stainless steels; Thermal treatment; Materials Science (all)
File in questo prodotto:
File Dimensione Formato  
metals-07-00525-v2.pdf

accesso aperto

: Publisher’s version
Dimensione 47.52 MB
Formato Adobe PDF
47.52 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1039585
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact