This work reports an electrochemical investigation of corrosion and repassivation in NaCl solutions of structural Al 7075-T6 and Al 2024-T3 as a function of permanent load in bending by means of single-cycle anodic polarization. Experimental variables other than the load level were the extent of corrosion, chloride ion concentration and initial pH of the test solution, in addition to the pre-exposure in the aggressive environment and of the viscosity of the test solution for Al 7075-T6. The susceptibility to local stress during corrosion and repassivation depends on the alloy microstructure and corrosion mechanisms. In the case of Al 2024-T3, the mechanical activation is driven by cathodically controlled dissolution of this alloy at open circuit in concentrated NaCl, being indicative of a chemomechanical effect. Conversely, for Al 7075-T6, the effect of applied load is better discerned from the repassivation response. Film rupture/formation sequence and related interfacial (electro)chemical processes determine the stress-enhanced metastable repassivation of this alloy.

Electrochemical investigation of corrosion and repassivation of structural aluminum alloys under permanent load in bending

FERRI, MICHELE;Cabrini, Marina;Conte, Antonietta Lo
2017-01-01

Abstract

This work reports an electrochemical investigation of corrosion and repassivation in NaCl solutions of structural Al 7075-T6 and Al 2024-T3 as a function of permanent load in bending by means of single-cycle anodic polarization. Experimental variables other than the load level were the extent of corrosion, chloride ion concentration and initial pH of the test solution, in addition to the pre-exposure in the aggressive environment and of the viscosity of the test solution for Al 7075-T6. The susceptibility to local stress during corrosion and repassivation depends on the alloy microstructure and corrosion mechanisms. In the case of Al 2024-T3, the mechanical activation is driven by cathodically controlled dissolution of this alloy at open circuit in concentrated NaCl, being indicative of a chemomechanical effect. Conversely, for Al 7075-T6, the effect of applied load is better discerned from the repassivation response. Film rupture/formation sequence and related interfacial (electro)chemical processes determine the stress-enhanced metastable repassivation of this alloy.
2017
Al alloys; bending load; electrochemistry; repassivation; Chemistry (all); Chemical Engineering (all); Materials Science (all)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1039347
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact