In the last few years, multi-core processors entered into the domain of embedded systems: this, together with virtualization techniques, allows multiple applications to easily run on the same System-on-Chip (SoC). As power consumption remains one of the most impacting costs on any digital system, several approaches have been explored in literature to cope with power caps, trying to maximize the performance of the hosted applications. In this paper, we present some preliminary results and opportunities towards a performanceaware power capping orchestrator for the Xen hypervisor. The proposed solution, called XeMPUPiL, uses the Intel Running Average Power Limit (RAPL) hardware interface to set a strict limit on the processor's power consumption, while a software-level Observe-Decide-Act (ODA) loop performs an exploration of the available resource allocations to find the most power efficient one for the running workload. We show how XeMPUPiL is able to achieve higher performance under different power caps for almost all the different classes of benchmarks analyzed (e.g., CPU-, memory-and IO-bound).
Towards a performance-aware power capping orchestrator for the Xen hypervisor
Arnaboldi, Marco;Ferroni, Matteo;Santambrogio, Marco D.
2016-01-01
Abstract
In the last few years, multi-core processors entered into the domain of embedded systems: this, together with virtualization techniques, allows multiple applications to easily run on the same System-on-Chip (SoC). As power consumption remains one of the most impacting costs on any digital system, several approaches have been explored in literature to cope with power caps, trying to maximize the performance of the hosted applications. In this paper, we present some preliminary results and opportunities towards a performanceaware power capping orchestrator for the Xen hypervisor. The proposed solution, called XeMPUPiL, uses the Intel Running Average Power Limit (RAPL) hardware interface to set a strict limit on the processor's power consumption, while a software-level Observe-Decide-Act (ODA) loop performs an exploration of the available resource allocations to find the most power efficient one for the running workload. We show how XeMPUPiL is able to achieve higher performance under different power caps for almost all the different classes of benchmarks analyzed (e.g., CPU-, memory-and IO-bound).File | Dimensione | Formato | |
---|---|---|---|
824ce6c4ccac88c0e2ab37673518a86e8521.pdf
Accesso riservato
:
Pre-Print (o Pre-Refereeing)
Dimensione
678.19 kB
Formato
Adobe PDF
|
678.19 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.