Tools and applications for event stream processing and real-time analytics are getting a huge hype these days on a wide range of application scenarios, from the smallest Internet of Things (IoT) embedded sensor to the most popular Social Network feed. Unfortunately, dealing with this kind of input rises some issues that can easily mine the real-time analysis requirement due to an unexpected overload of the system, this happens as the processing time may strongly depend on the single event content, while the event arrival rate may vary unpredictably over time. In this work, we propose Fast Forward With Degradation (FFWD), a latency-aware load shedding framework that exploits performance degradation techniques to adapt the throughput of the application to the size of the input, allowing the system to have a fast and reliable response time in case of overloading. Moreover, we show how different domain-specific policies can guarantee a reasonable accuracy of the aggregated output metrics.

FFWD: Latency-Aware Event Stream Processing via Domain-Specific Load-Shedding Policies

Brondolin, R.;Ferroni, M.;Santambrogio, M. D.
2016-01-01

Abstract

Tools and applications for event stream processing and real-time analytics are getting a huge hype these days on a wide range of application scenarios, from the smallest Internet of Things (IoT) embedded sensor to the most popular Social Network feed. Unfortunately, dealing with this kind of input rises some issues that can easily mine the real-time analysis requirement due to an unexpected overload of the system, this happens as the processing time may strongly depend on the single event content, while the event arrival rate may vary unpredictably over time. In this work, we propose Fast Forward With Degradation (FFWD), a latency-aware load shedding framework that exploits performance degradation techniques to adapt the throughput of the application to the size of the input, allowing the system to have a fast and reliable response time in case of overloading. Moreover, we show how different domain-specific policies can guarantee a reasonable accuracy of the aggregated output metrics.
2016
Proceedings - 19th IEEE International Conference on Computational Science and Engineering, 14th IEEE International Conference on Embedded and Ubiquitous Computing and 15th International Symposium on Distributed Computing and Applications to Business, Engineering and Science, CSE-EUC-DCABES 2016
9781509035939
load-shedding; sentiment analysis; stream processing; Engineering (miscellaneous); Computer Science (miscellaneous); Computer Networks and Communications; Computer Science Applications1707 Computer Vision and Pattern Recognition; Business, Management and Accounting (miscellaneous)
File in questo prodotto:
File Dimensione Formato  
07982234.pdf

Accesso riservato

: Publisher’s version
Dimensione 303.88 kB
Formato Adobe PDF
303.88 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1038803
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact