The advancement of in-vehicle technology for driving safety has considerably improved. Current Advanced Driver- Assistance Systems (ADAS) make road safer by alerting the driver, through visual, auditory, and haptic signals about dangerous driving situations, and consequently, preventing possible collisions. However, in some circumstances the driver can fail to properly respond to the alert since human cognition systems can be influenced by the driving context. Driving simulation can help evaluating this aspect since it is possible to reproduce different ADAS in safe driving conditions. However, driving simulation alone does not provide information about how the change in driver's workload affects the interaction of the driver with ADAS. This paper presents a driving simulator system integrating physiological sensors that acquire heart's activity, blood volume pulse, respiration rate, and skin conductance parameters. Through a specific processing of these measurements, it is possible to measure different cognitive processes that contribute to the change of driver's workload while using ADAS, in different driving contexts. The preliminary studies conducted in this research show the effectiveness of this system and provide guidelines for the future acquisition and the treatment of the physiological data to assess ADAS workload.

Driving simulator system to evaluate driver's workload using adas in different driving contexts

Caruso, Giandomenico;Ruscio, Daniele;Ariansyah, Dedy;Bordegoni, Monica
2017-01-01

Abstract

The advancement of in-vehicle technology for driving safety has considerably improved. Current Advanced Driver- Assistance Systems (ADAS) make road safer by alerting the driver, through visual, auditory, and haptic signals about dangerous driving situations, and consequently, preventing possible collisions. However, in some circumstances the driver can fail to properly respond to the alert since human cognition systems can be influenced by the driving context. Driving simulation can help evaluating this aspect since it is possible to reproduce different ADAS in safe driving conditions. However, driving simulation alone does not provide information about how the change in driver's workload affects the interaction of the driver with ADAS. This paper presents a driving simulator system integrating physiological sensors that acquire heart's activity, blood volume pulse, respiration rate, and skin conductance parameters. Through a specific processing of these measurements, it is possible to measure different cognitive processes that contribute to the change of driver's workload while using ADAS, in different driving contexts. The preliminary studies conducted in this research show the effectiveness of this system and provide guidelines for the future acquisition and the treatment of the physiological data to assess ADAS workload.
2017
Proceedings of the ASME Design Engineering Technical Conference
9780791858110
Mechanical Engineering; Computer Graphics and Computer-Aided Design; Computer Science Applications1707 Computer Vision and Pattern Recognition; Modeling and Simulation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1038407
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact