Volume phase holographic elements are becoming attractive thanks to the large efficiency and good optical quality. They are based on photosensitive materials where a modulation of the refractive index is induced. In this paper, we highlight the strategies to obtain a change in the refractive index in a dielectric material, namely a change in the material density and/or in the molecular polarizability. Moreover, we show the results achieved for materials that undergo the photo-Fries reaction as function of the molecular structure and the illumination conditions. We also report the results on a system based on the diazo Meldrum's acid where volatile molecules are produced upon light exposure.

New photosensitive systems for volume phase holography

Bianco, Andrea;Colella, Letizia;GALLI, PAOLA;Zanutta, Alessio;Bertarelli, Chiara
2017-01-01

Abstract

Volume phase holographic elements are becoming attractive thanks to the large efficiency and good optical quality. They are based on photosensitive materials where a modulation of the refractive index is induced. In this paper, we highlight the strategies to obtain a change in the refractive index in a dielectric material, namely a change in the material density and/or in the molecular polarizability. Moreover, we show the results achieved for materials that undergo the photo-Fries reaction as function of the molecular structure and the illumination conditions. We also report the results on a system based on the diazo Meldrum's acid where volatile molecules are produced upon light exposure.
2017
Proceedings of SPIE - The International Society for Optical Engineering
9781510609679
Photo-Fries; Photoreaction; refractive index; Thin films; Volume phase holography; Electronic, Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic Engineering
File in questo prodotto:
File Dimensione Formato  
102330L.pdf

Accesso riservato

: Publisher’s version
Dimensione 518.36 kB
Formato Adobe PDF
518.36 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1038235
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact