This work describes the optimization of the shape profiles for shape memory alloys (SMA) sheets in hybrid layered composite structures, i.e. slender beams or thinner plates, designed for the passive attenuation of flexural vibrations. The paper starts with the description of the material and architecture of the investigated hybrid layered composite. An analytical method, for evaluating the energy dissipation inside a vibrating cantilever beam is developed. The analytical solution is then followed by a shape profile optimization of the inserts, using a genetic algorithm to minimize the SMA material layer usage, while maintaining target level of structural damping. Delamination problem at SMA/glass fiber reinforced polymer interface is discussed. At the end, the proposed methodology has been applied to study the hybridization of a wind turbine layered structure blade with SMA material, in order to increase its passive damping.

Optimal design of damping layers in SMA/GFRP laminated hybrid composites

HAGHDOUST, POUYA;Cinquemani simone;Lo Conte Antonietta;Lecis Nora
2017-01-01

Abstract

This work describes the optimization of the shape profiles for shape memory alloys (SMA) sheets in hybrid layered composite structures, i.e. slender beams or thinner plates, designed for the passive attenuation of flexural vibrations. The paper starts with the description of the material and architecture of the investigated hybrid layered composite. An analytical method, for evaluating the energy dissipation inside a vibrating cantilever beam is developed. The analytical solution is then followed by a shape profile optimization of the inserts, using a genetic algorithm to minimize the SMA material layer usage, while maintaining target level of structural damping. Delamination problem at SMA/glass fiber reinforced polymer interface is discussed. At the end, the proposed methodology has been applied to study the hybridization of a wind turbine layered structure blade with SMA material, in order to increase its passive damping.
2017
composite, high damping optimization, shape memory alloys.
File in questo prodotto:
File Dimensione Formato  
smart_mat_and_structure_17.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.32 MB
Formato Adobe PDF
2.32 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1038209
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact