The fundamental penalty of subcarrier modulation (SCM) with independent subcarrier phase noise processing is estimated. It is shown that the fundamental signal-to-noise ratio (SNR) penalty related to poorer phase noise tolerance of decreased baudrate subcarriers increases significantly with modulation format size and can potentially exceed the gains of the nonlinear tolerance of SCM. A low-complexity algorithm is proposed for joint subcarrier phase noise processing, which is scalable in the number of subcarriers and recovers almost entirely the fundamental SNR penalty with respect to single-carrier systems operating at the same net data-rate. The proposed algorithm enables high-order modulation formats with high count of subcarriers to be safely employed for nonlinearity mitigation in optical communication systems.

Phase Noise Compensation for Nonlinearity-Tolerant Digital Subcarrier Systems with High-Order QAM

Barletta, L.;
2017-01-01

Abstract

The fundamental penalty of subcarrier modulation (SCM) with independent subcarrier phase noise processing is estimated. It is shown that the fundamental signal-to-noise ratio (SNR) penalty related to poorer phase noise tolerance of decreased baudrate subcarriers increases significantly with modulation format size and can potentially exceed the gains of the nonlinear tolerance of SCM. A low-complexity algorithm is proposed for joint subcarrier phase noise processing, which is scalable in the number of subcarriers and recovers almost entirely the fundamental SNR penalty with respect to single-carrier systems operating at the same net data-rate. The proposed algorithm enables high-order modulation formats with high count of subcarriers to be safely employed for nonlinearity mitigation in optical communication systems.
2017
joint processing; Multicarrier; phase noise; subcarrier multiplexing; WDM; Atomic and Molecular Physics, and Optics; Electrical and Electronic Engineering
File in questo prodotto:
File Dimensione Formato  
Published2017.pdf

accesso aperto

: Publisher’s version
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1037634
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 12
social impact