In this work we study the statistical model of source localization based on Range Difference measurements, under the assumption of Gaussian noise on the data. Our analysis is based on a previous work of the same authors concerning the localization in a noiseless scenario. We investigate the case of planar localization of a source using a minimal configuration of three non aligned receivers. We have four curved exponential families corresponding to four different, non disjoint, regions of the feasible set. For each family we solve Maximum Likelihood Estimation (MLE). This requires to find the projection of a point on a set of segments and arcs of ellipse. Then, we perform the analytic study of the localization accuracy. In particular, we give formulas for mean square error and bias of MLE, depending on the displacement vectors. We validate the results through Monte Carlo simulations, in a given setup of the receivers. As the set of feasible measurements is a semialgebraic variety, this investigation makes use of techniques from Algebraic Statistics and Information Geometry.

On the statistical model of source localization based on Range Difference measurements

M. Compagnoni;R. Notari;F. Antonacci;A. Sarti
2017-01-01

Abstract

In this work we study the statistical model of source localization based on Range Difference measurements, under the assumption of Gaussian noise on the data. Our analysis is based on a previous work of the same authors concerning the localization in a noiseless scenario. We investigate the case of planar localization of a source using a minimal configuration of three non aligned receivers. We have four curved exponential families corresponding to four different, non disjoint, regions of the feasible set. For each family we solve Maximum Likelihood Estimation (MLE). This requires to find the projection of a point on a set of segments and arcs of ellipse. Then, we perform the analytic study of the localization accuracy. In particular, we give formulas for mean square error and bias of MLE, depending on the displacement vectors. We validate the results through Monte Carlo simulations, in a given setup of the receivers. As the set of feasible measurements is a semialgebraic variety, this investigation makes use of techniques from Algebraic Statistics and Information Geometry.
2017
Range difference space, Statistical Modeling, Maximum Likelihood Estimation, Information Geometry, Algebraic Statistics
File in questo prodotto:
File Dimensione Formato  
IG.pdf

accesso aperto

Descrizione: articolo accettato
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.59 MB
Formato Adobe PDF
1.59 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1037074
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact