Lock-in amplifiers (LIAs) are extensively used to perform high-resolution measurements. Ideally, when using LIAs, it would be possible to measure a minimum signal variation limited by the instrument input equivalent noise at the operating frequency and the chosen filtering bandwidth. Instead, digital LIAs show an unforeseen 1/f noise at the instrument demodulated output, proportional to the signal amplitude that poses a fundamental limit to the minimum detectable signal variation using the lock-in technique. In particular, the typical resolution limit of fast operating LIAs (>1 MHz) is of tens of ppm, orders of magnitude worse than the expected value. A detailed analysis shows that the additional noise is due to slow fluctuations of the signal gain from the generation stage to the acquisition one, mainly due to the digital-to-analog and analog-to-digital converters. To compensate them, a switched ratiometric technique based on two analog-to-digital converters alternately acquiring the signal coming from the device under test and the stimulus signal has been conceived. A field-programmabale gate array-based LIA working up to 10 MHz and implementing the technique has been realized, and results demonstrate a resolution improvement of more than an order of magnitude (from tens of ppm down to sub-ppm values) compared to standard implementations working up to similar frequencies. The technique is generally applicable without requiring calibration nor ad hoc experimental arrangements.

Switched ratiometric lock-in amplifier enabling sub-ppm measurements in a wide frequency range

Gervasoni, G.;Carminati, M.;Ferrari, G.
2017-01-01

Abstract

Lock-in amplifiers (LIAs) are extensively used to perform high-resolution measurements. Ideally, when using LIAs, it would be possible to measure a minimum signal variation limited by the instrument input equivalent noise at the operating frequency and the chosen filtering bandwidth. Instead, digital LIAs show an unforeseen 1/f noise at the instrument demodulated output, proportional to the signal amplitude that poses a fundamental limit to the minimum detectable signal variation using the lock-in technique. In particular, the typical resolution limit of fast operating LIAs (>1 MHz) is of tens of ppm, orders of magnitude worse than the expected value. A detailed analysis shows that the additional noise is due to slow fluctuations of the signal gain from the generation stage to the acquisition one, mainly due to the digital-to-analog and analog-to-digital converters. To compensate them, a switched ratiometric technique based on two analog-to-digital converters alternately acquiring the signal coming from the device under test and the stimulus signal has been conceived. A field-programmabale gate array-based LIA working up to 10 MHz and implementing the technique has been realized, and results demonstrate a resolution improvement of more than an order of magnitude (from tens of ppm down to sub-ppm values) compared to standard implementations working up to similar frequencies. The technique is generally applicable without requiring calibration nor ad hoc experimental arrangements.
2017
Instrumentation
File in questo prodotto:
File Dimensione Formato  
ELIA.pdf

Accesso riservato

: Publisher’s version
Dimensione 3.66 MB
Formato Adobe PDF
3.66 MB Adobe PDF   Visualizza/Apri
pdf_archiveRSINAKvol_88iss_10104704_1_am.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.97 MB
Formato Adobe PDF
1.97 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1037033
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 21
social impact