In digital communication systems, multipath propagation induces Inter Symbol Interference (ISI). To reduce the effect of ISI different channel equalization algorithms are used. Complex equalization algorithms allow for achieving the best performance but they do not meet the requirements for implementation of real-time detection at low complexity, thus limiting their application. In this paper, we present different blind and non-blind equalization structures based on Artificial Neural Networks (ANNs) and, also, we analyze their complexity versus performance. Since the activation function at the output layer depends on the cost function with respect to the input, in the present work we use mean squared error as loss function for the output layer. The simulated network is based on multilayer feedforward perceptron ANN, which is trained by utilizing the error back-propagation algorithm. The weights of the network are updated in accordance with training of the network to improve the convergence speed. Simulation results demonstrate that the implementation of equalizers using ANN provides an upper hand over the performance and computational complexity with respect to conventional methods.

Performance comparison of blind and non-blind channel equalizers using artificial neural networks

Kumar, Atul;Magarini, Maurizio;
2017-01-01

Abstract

In digital communication systems, multipath propagation induces Inter Symbol Interference (ISI). To reduce the effect of ISI different channel equalization algorithms are used. Complex equalization algorithms allow for achieving the best performance but they do not meet the requirements for implementation of real-time detection at low complexity, thus limiting their application. In this paper, we present different blind and non-blind equalization structures based on Artificial Neural Networks (ANNs) and, also, we analyze their complexity versus performance. Since the activation function at the output layer depends on the cost function with respect to the input, in the present work we use mean squared error as loss function for the output layer. The simulated network is based on multilayer feedforward perceptron ANN, which is trained by utilizing the error back-propagation algorithm. The weights of the network are updated in accordance with training of the network to improve the convergence speed. Simulation results demonstrate that the implementation of equalizers using ANN provides an upper hand over the performance and computational complexity with respect to conventional methods.
2017
International Conference on Ubiquitous and Future Networks, ICUFN
9781509047499
Blind Channel Equalization; Multi-Layer Perceptron; Neural Networks; Computer Networks and Communications; Computer Science Applications1707 Computer Vision and Pattern Recognition; Hardware and Architecture
File in questo prodotto:
File Dimensione Formato  
NNBlindNonBlindComparisonICUFN2017Magarini.pdf

accesso aperto

: Pre-Print (o Pre-Refereeing)
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1036698
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 6
social impact