We experimentally and theoretically investigate the use of silicon germanium (SiGe) on silicon substrate as a new platform for optical interconnects. The system composed of Germanium (Ge) rich Si1-xGex guiding layer on a graded SiGe layer is showed to be suitable for the realization of all main building blocks of passive optical circuitry. We show experimentally at a wavelength of 1550nm that sharp 12μm radius bends can be obtained by light confinement tuning. Mach-Zehnder interferometer with more than 10 dB extinction ratio is also demonstrated. Moreover, Ge-rich Si1-xGex based passive components are very interesting for their native integration with Ge-rich active optical devices. Hence, by using this new platform for optical integrated circuits, lattice mismatch between silicon and germanium is no longer a major constraint for the integration of Ge-rich active photonic components on silicon.

Silicon germanium on graded buffer as a new platform for optical interconnects on silicon

Frigerio, Jacopo;Ballabio, Andrea;Isella, Giovanni;
2016-01-01

Abstract

We experimentally and theoretically investigate the use of silicon germanium (SiGe) on silicon substrate as a new platform for optical interconnects. The system composed of Germanium (Ge) rich Si1-xGex guiding layer on a graded SiGe layer is showed to be suitable for the realization of all main building blocks of passive optical circuitry. We show experimentally at a wavelength of 1550nm that sharp 12μm radius bends can be obtained by light confinement tuning. Mach-Zehnder interferometer with more than 10 dB extinction ratio is also demonstrated. Moreover, Ge-rich Si1-xGex based passive components are very interesting for their native integration with Ge-rich active optical devices. Hence, by using this new platform for optical integrated circuits, lattice mismatch between silicon and germanium is no longer a major constraint for the integration of Ge-rich active photonic components on silicon.
2016
OPTICAL INTERCONNECTS XVI
9781628419887
Bends; Germanium; Mach-Zehnder interferometer; Silicon photonics; Waveguide; Electronic, Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic Engineering
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1036464
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact