Regarded as one of the future enabling technologies of the Internet of Things at the biological and nanoscale domains, Molecular Communication (MC) promises to enable applications in healthcare, environmental protection, and bioremediation, amongst others. Since MC is directly inspired by communication processes in biological cells, the engineering of biological circuits through cells' genetic code manipulation, which enables access to the cells' information processing abilities, is a candidate technology for the future realization of MC components. In this paper, inspired by previous research on channel coding schemes for MC and biological circuits for cell communications, a joint encoder and modulator design is proposed for the transmission of cellular information through signaling molecules. In particular, the information encoding and modulation are based on a binary parity check scheme, and they are implemented by interconnecting biological circuit components based on gene expression and mass action reactions. Each component is mathematically modeled and tuned according to the desired output. The implementation of the biological circuit in a simulation environment is then presented along with the corresponding numerical results, which validate the proposed design by showing agreement with an ideal encoding and modulator scheme.

A biological circuit design for modulated parity-check encoding in molecular communication

Magarini, Maurizio
2017-01-01

Abstract

Regarded as one of the future enabling technologies of the Internet of Things at the biological and nanoscale domains, Molecular Communication (MC) promises to enable applications in healthcare, environmental protection, and bioremediation, amongst others. Since MC is directly inspired by communication processes in biological cells, the engineering of biological circuits through cells' genetic code manipulation, which enables access to the cells' information processing abilities, is a candidate technology for the future realization of MC components. In this paper, inspired by previous research on channel coding schemes for MC and biological circuits for cell communications, a joint encoder and modulator design is proposed for the transmission of cellular information through signaling molecules. In particular, the information encoding and modulation are based on a binary parity check scheme, and they are implemented by interconnecting biological circuit components based on gene expression and mass action reactions. Each component is mathematically modeled and tuned according to the desired output. The implementation of the biological circuit in a simulation environment is then presented along with the corresponding numerical results, which validate the proposed design by showing agreement with an ideal encoding and modulator scheme.
2017
IEEE International Conference on Communications
9781467389990
biochemical simulation; biological circuit; chemical reaction modeling; Hill function; Molecular communication; parity-check encoding; Computer Networks and Communications; Electrical and Electronic Engineering
File in questo prodotto:
File Dimensione Formato  
Work Continuation_V_2_3.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 566.7 kB
Formato Adobe PDF
566.7 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1036330
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact