Perpendicular spin-transfer torque (p-STT) memory is attracting an increasing interest as storage class memory (SCM) or static/dynamic RAM replacement. In these applications, high speed and extended endurance are essential and sometimes conflicting requirements. This work addresses cycling endurance of p-STT devices by pulsed experiments and modeling of the dielectric breakdown. We present a new endurance model able to predict the STT endurance as a function of applied voltage, pulse width, pulse polarity and delay time. The trade-off between write time and endurance for RAM replacement is finally addressed.
Understanding cycling endurance in perpendicular spin-transfer torque (p-STT) magnetic memory
Carboni, R.;Ambrogio, S.;Ielmini, D.
2016-01-01
Abstract
Perpendicular spin-transfer torque (p-STT) memory is attracting an increasing interest as storage class memory (SCM) or static/dynamic RAM replacement. In these applications, high speed and extended endurance are essential and sometimes conflicting requirements. This work addresses cycling endurance of p-STT devices by pulsed experiments and modeling of the dielectric breakdown. We present a new endurance model able to predict the STT endurance as a function of applied voltage, pulse width, pulse polarity and delay time. The trade-off between write time and endurance for RAM replacement is finally addressed.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2016_iedm_stt.pdf
Accesso riservato
:
Publisher’s version
Dimensione
1.8 MB
Formato
Adobe PDF
|
1.8 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.