The stability of precast concrete wall panels under seismic action can be ensured by means of dissipative systems of panel-to-panel connections that allow to control the level of forces and limit the displacements. This paper deals with a connection system consisting of friction-based devices inserted into appropriate recesses within the joints between vertical or horizontal panels. The results of experimental tests carried out on single connectors, as well as on structural sub-assemblies consisting of two full scale panels, are presented. The technological choices of materials and components that ensure a stable hysteretic behaviour of the devices are discussed. The effectiveness of the devices in improving the seismic performance of precast buildings under seismic action is also shown based on the results of cyclic and pseudo-dynamic tests on full-scale structural prototypes.
Friction-based dissipative devices for precast concrete panels
DAL LAGO, BRUNO ALBERTO;BIONDINI, FABIO;TONIOLO, GIANDOMENICO
2017-01-01
Abstract
The stability of precast concrete wall panels under seismic action can be ensured by means of dissipative systems of panel-to-panel connections that allow to control the level of forces and limit the displacements. This paper deals with a connection system consisting of friction-based devices inserted into appropriate recesses within the joints between vertical or horizontal panels. The results of experimental tests carried out on single connectors, as well as on structural sub-assemblies consisting of two full scale panels, are presented. The technological choices of materials and components that ensure a stable hysteretic behaviour of the devices are discussed. The effectiveness of the devices in improving the seismic performance of precast buildings under seismic action is also shown based on the results of cyclic and pseudo-dynamic tests on full-scale structural prototypes.File | Dimensione | Formato | |
---|---|---|---|
2017_ES.pdf
Accesso riservato
Descrizione: 2017_ES
:
Publisher’s version
Dimensione
4.16 MB
Formato
Adobe PDF
|
4.16 MB | Adobe PDF | Visualizza/Apri |
11311-1035001_Biondini.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
5.16 MB
Formato
Adobe PDF
|
5.16 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.