Methanol is an important intermediate in the synthesis of different chemicals. It is mainly produced by reforming of natural gas in centralized facilities with productive capacities on the order of 109 tons per day. Production of methanol from biomass suffers from the cost and logistics of the transportation of biomass and it has not yet maturated into commercial scale. The techno-economic feasibility of the co-production of bio-methanol and bio-char is assessed through detailed computer simulations using process simulator Aspen HYSYS® together with the gasification simulator GASDS. This work further elaborates the previous results on the bio-methanol production process, presenting particularities and updates on previously reported values. The production model is seen to be valid, with payback times that go from 3 to 6 years according to the capacity of the plant (100 to 1000 kt of biomass per year). Self-sustainability is possible but a 50/50 mix of producing and buying electricity yields the most economic choice. © Copyright 2017, AIDIC Servizi S.r.l.

Self-sustainable bio-methanol & bio-char coproduction from 2nd generation biomass gasification

BOZZANO, GIULIA LUISA;MANENTI, FLAVIO
2017-01-01

Abstract

Methanol is an important intermediate in the synthesis of different chemicals. It is mainly produced by reforming of natural gas in centralized facilities with productive capacities on the order of 109 tons per day. Production of methanol from biomass suffers from the cost and logistics of the transportation of biomass and it has not yet maturated into commercial scale. The techno-economic feasibility of the co-production of bio-methanol and bio-char is assessed through detailed computer simulations using process simulator Aspen HYSYS® together with the gasification simulator GASDS. This work further elaborates the previous results on the bio-methanol production process, presenting particularities and updates on previously reported values. The production model is seen to be valid, with payback times that go from 3 to 6 years according to the capacity of the plant (100 to 1000 kt of biomass per year). Self-sustainability is possible but a 50/50 mix of producing and buying electricity yields the most economic choice. © Copyright 2017, AIDIC Servizi S.r.l.
2017
File in questo prodotto:
File Dimensione Formato  
Amaral_2017_Self_sustainable.pdf

accesso aperto

: Publisher’s version
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1033523
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact