In this paper we analyze the convergence properties of two-level and W-cycle multigrid solvers for the numerical solution of the linear system of equations arising from hp-version symmetric interior penalty discontinuous Galerkin discretizations of second-order elliptic partial differential equations on polygonal/polyhedral meshes. We prove that the two-level method converges uniformly with respect to the granularity of the grid and the polynomial approximation degree p, provided that the number of smoothing steps, which depends on p, is chosen sufficiently large. An analogous result is obtained for the W-cycle multigrid algorithm, which is proved to be uniformly convergent with respect to the mesh size, the polynomial approximation degree, and the number of levels, provided the number of smoothing steps is chosen sufficiently large. Numerical experiments are presented which underpin the theoretical predictions; moreover, the proposed multilevel solvers are shown to be convergent in practice, even when some of the theoretical assumptions are not fully satisfied.

Multigrid algorithms for hp-version interior penalty discontinuous Galerkin methods on polygonal and polyhedral meshes

Abstract

In this paper we analyze the convergence properties of two-level and W-cycle multigrid solvers for the numerical solution of the linear system of equations arising from hp-version symmetric interior penalty discontinuous Galerkin discretizations of second-order elliptic partial differential equations on polygonal/polyhedral meshes. We prove that the two-level method converges uniformly with respect to the granularity of the grid and the polynomial approximation degree p, provided that the number of smoothing steps, which depends on p, is chosen sufficiently large. An analogous result is obtained for the W-cycle multigrid algorithm, which is proved to be uniformly convergent with respect to the mesh size, the polynomial approximation degree, and the number of levels, provided the number of smoothing steps is chosen sufficiently large. Numerical experiments are presented which underpin the theoretical predictions; moreover, the proposed multilevel solvers are shown to be convergent in practice, even when some of the theoretical assumptions are not fully satisfied.
Scheda breve Scheda completa Scheda completa (DC)
2017
hp-discontinuous Galerkin methods; Polygonal/polyhedral grids; Two-level and multigrid algorithms; Algebra and Number Theory; Computational Mathematics
File in questo prodotto:
File
10.1007-s10092-017-0223-6.pdf

Accesso riservato

Descrizione: articolo principale
: Publisher’s version
Dimensione 1.43 MB
11311-1033278_Antonietti.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.81 MB
Utilizza questo identificativo per citare o creare un link a questo documento: `https://hdl.handle.net/11311/1033278`