In discrete tomographic image reconstruction, projections are taken along a finite set S of valid directions for a working grid A. In general, uniqueness cannot be achieved in the whole grid A. Usually, some information on the object to be reconstructed is introduced, that, sometimes, allows possible ambiguities to be removed. From a different perspective, one aims in finding subregions of A where uniqueness can be guaranteed, and obtained in linear time, only from the knowledge of S. When S consists of two lattice directions, the shape of any such region of uniqueness, say ROU, have been completely characterized in previous works by means of a double Euclidean division algorithm called DEDA. Results have been later extended to special triples of directions, under a suitable assumption on their entries. In this paper we remove the previous assumption, so providing a complete characterization of the shape of the ROU for such kind of triples. We also show that the employed strategy can be even applied to more general sets of three directions, where the corresponding ROU can be characterized as well. Independently of the combinatorial interest of the problem, the result can be exploited to define in advance, namely before using any kind of radiation, suitable sets of directions that allow regions of interest to be included in the corresponding ROU. Results have been proved in all details, and several experiments are considered, in order to support the theoretical steps and to clarify possible applications.

Regions of Uniqueness Quickly Reconstructed by Three Directions in Discrete Tomography

DULIO, PAOLO;PAGANI, SILVIA MARIA CARLA;
2017-01-01

Abstract

In discrete tomographic image reconstruction, projections are taken along a finite set S of valid directions for a working grid A. In general, uniqueness cannot be achieved in the whole grid A. Usually, some information on the object to be reconstructed is introduced, that, sometimes, allows possible ambiguities to be removed. From a different perspective, one aims in finding subregions of A where uniqueness can be guaranteed, and obtained in linear time, only from the knowledge of S. When S consists of two lattice directions, the shape of any such region of uniqueness, say ROU, have been completely characterized in previous works by means of a double Euclidean division algorithm called DEDA. Results have been later extended to special triples of directions, under a suitable assumption on their entries. In this paper we remove the previous assumption, so providing a complete characterization of the shape of the ROU for such kind of triples. We also show that the employed strategy can be even applied to more general sets of three directions, where the corresponding ROU can be characterized as well. Independently of the combinatorial interest of the problem, the result can be exploited to define in advance, namely before using any kind of radiation, suitable sets of directions that allow regions of interest to be included in the corresponding ROU. Results have been proved in all details, and several experiments are considered, in order to support the theoretical steps and to clarify possible applications.
2017
Discrete Tomography; Lattice grid; Projection; Uniqueness region; Theoretical Computer Science; Algebra and Number Theory; Information Systems; Computational Theory and Mathematics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1033075
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact